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This paper re-examines the dynamic Casimir effect as a possible mechanism for propulsion. Previous investigations assumed 
mechanical motion of a mirror to generate thrust. In this case, because of the finite strength of materials and the high frequencies 
necessary, the amplitudes of motion must be restricted to the nanometer range. To permit larger amplitudes, an epitaxial stack 
of transparent semiconductor laminae is proposed. Voltage is rapidly switched to successive lamina, creating continuous, large 
amplitude motion of a reflective surface without mechanical contrivances. The paper provides relativistic results for large 
amplitude motion. With centimeter-level magnitudes, propulsive forces are raised to significant levels.

Keywords: Dynamic Casimir, Vacuum radiation pressure, Quantum propulsion, transparent semiconductors, Transflecting 
liquid crystals

Journal of the British Interplanetary Society, Vol. 70, pp.394-404, 2017

INTRODUCTION

More than 60 years ago, H. B. G. Casimir [1], and Casimir and 
D. Polder [2] explained the retarded van der Waals force in 
terms of the zero-point energy of a quantized field. Both the 
static and dynamic Casimir effects are discussed in several re-
views [3-7]. This work is concerned with the dynamic Casimir 
effect, which involves the interaction between moving mirrors 
and the ground state (“vacuum state”) of the electromagnet-
ic field. In particular, following Maclay and Forward, [8], the 
present analysis is motivated by the possibility of a propulsive 
mechanism. 

When estimating the magnitude of the force that could be 
generated, Maclay and Forward assumed that the amplitude 
of high frequency motion of an actual mirror need be in the 
nanometer range due to the finite strength of materials. This 
restriction limits the possible propulsive force to very small 
values. However, this author observes that motion of a single 
reflective surface is not essential: that the Casimir effect is due 
to the motion of the boundary conditions constraining the free 
field in its ground state. The advent of amorphous oxide, trans-
parent semiconductors used for thin film applications [9-14] 
suggests the possibility of achieving large motions of reflective 
surfaces without mechanically moving parts. The proposed ep-
itaxial assembly of semiconductor laminae, is illustrated in Fig. 
1. Without the application of voltage, each lamina is a partially 
transparent dielectric; but when supplied by voltage it becomes 
a reflecting conductor serving as a mirror. Voltage inputs can 

be switched among the laminae at high speed, effectively mov-
ing the mirror at high velocities and accelerations without the 
use of moving parts. Thus motions of the reflective surface that 
have both high frequencies and large amplitudes can be pro-
duced. In a treatment of the pressure on moving mirrors due to 
the Casimir effect, Neto and his colleagues [7], took a pertur-
bative approach consistent with the assumption that the mirror 
motion be constrained to very small amplitudes. The objectives 
of this paper are to extend the analysis to large motions and 
the epitaxial approach described above; to obtain explicit ex-
pressions for the forces produced by a particular trajectory of 
motion; and to estimate the numerical values of these forces.

It is assumed that within certain wavelength bands, the re-
flectivity of each lamina can be set within a continuous range 
from completely reflective to completely transparent. The lam-
inae are also characterized by a finite response time. These fea-
tures can be combined so that when the laminae are sufficient-
ly closely spaced, and their energizing processes are properly 
phased, multi-laminae propagating wave of reflectivity can be 
created that sustains the properties of a continuously moving 
mirror (see Appendix A). In the following, the multi-laminae 
phasing wave is treated as a single, perfectly reflecting surface. 

FUNDAMENTAL DEVELOPMENT

Define a coordinate system, (x, y, z), with unit orthogonal basis 
vectors .  Consider the case in which surface is a 
section of a plane having area A and parallel to the x-y axis, as 
illustrated in Fig. 2. Its motion is along the z axis with z-coordi-
nate , where . Before the reflectivity is “turned 
on” at t = 0, the field is in the vacuum state. Also, the surface 
starts a cycle of motion coinciding with the x-y plane, so that 

. It is assumed that , so that one may treat 
the conductive surface and the field it produces without ac-
counting for edge effects. In the following the x-axis is defined 
to be perpendicular to z and in the plane formed by z and the 
direction of propagation of the plane wave associated with a 
particular vacuum state mode.Fig. 1:   Epitaxial stack of semiconductor lamina.
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For simplicity in this initial development, the surface is pre-
sumed to be either perfectly reflecting or perfectly transparent, 
depending only upon the wave number. This is modelled 
as a scalar function, R(k) = 1 (reflective), R(k) = 0 (transparent). 

Fig. 2:   Geometry of the motion of the conductive surface.

As a minimum, a model of R(k) should capture the fact 
that any conductive material is transparent to radiation that 
has frequencies above the plasma frequency, ωP. Following the 
Drude-Sommerfeld model [15-17], the upper limit of the wave 
number might be some fraction of:

  (1 a,b)

where m✳ is the effective mass of the charge carriers, e is the 
elementary charge, and ne is the volumetric number density of 
the charge carriers. ωP may be typically ≈1014 Hz , and the value 
for metals can be a hundred or even a thousand-fold larger. The 
simplest model has the form:

  (2)

(2) is essentially a formal regularization since the details of 
the dielectric function of the materials, the effects of absorp-
tion, and the semiconductor design and parameters are ig-
nored. The reflective properties are conceived to be homoge-
neous and isotropic.

To begin the analysis, the notational conventions of [18] are 
followed. Also, the continuous Fock space approach to quantiz-
ing the electromagnetic field [19] is adopted. The electric field 
operator in empty space and in the absence of boundaries is 
given by:

where ε0 is the vacuum dielectric constant. Quantities in bold 
type are 3-vectors, and a carrot over the symbol indicates a 
quantum operator. “h.c.” stands for “Hermitian conjugate”. k is 
the continuous wave number vector and ω is the angular fre-
quency, where ω(k) =ck, k=||k||. ε (k, s), s=1, 2  are the polariza-
tion vectors obeying the orthonormality requirements: 

  (3)

The terms â(k, s), and â†(k, s) are the annihilation and cre-
ation operators for field modes of wave vector k, and polariza-
tion s. These obey the commutation relations:

  (4 a,b,c)

Equation (3) describes the free electromagnetic field, which 
is taken to be the condition of the field at the initial instant, t = 
0. Note that the quantized fields are coupled by the same Max-
well Equations as the classical fields from which they came, i.e.:

  (5 a,b,c)

Since the time dependence of all terms in (1) is e-iωt, one can 
substitute (1) into (4.a) and integrate with respect to time to 
obtain:

  (6 a,b,c,d)

Because the only spatial dependence in the free field is , 
the  term can be replaced by . 
Thus, in the free field, the magnetic field operator is:

  (7)

The Heisenberg picture, in which the initial state is fixed and 
it is the operators that evolve in time, is chosen for the present 
analysis. It is assumed that the field is initially (at time t = 0 ) 
in the free-field state; thus (3) and (8) give the initial values of 
the electric and magnetic field operators. The operators then 
evolve according to the Heisenberg equations of motion. How-
ever, these are equivalent to the Maxwell operator equations, 
(6), (see [18], Art. 10.4.5). 

  (8)

As (3) and (8) indicate, to determine the electric field oper-
ator beyond t = 0, we need only consider the time evolution of 
the operator . Hence beyond t = 0, (3) and 
(8) become:

An Epitaxial Device for Dynamic Interaction with the Vacuum State

  (9)

 is a vector-valued function satisfying the wave 
equation derived from (6), all boundary conditions for t = 0 , 
and the initial condition .   rep-
resents the evolution of the initial wave vector to its value at the 
space-time point  .

                                        
The Lorentz force operator per unit volume on the field, f, is 

the primary object of attention:

  (10)
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Define volume VR,δ enclosed by surface SR,δ as in Fig. 3. In-
tegration of (11) over this volume and use of the divergence 
theorem, produces:

  (11)

where  is the Maxwell tensor operator:

  (12)

  (13)

and where  is the total momentum produced 
by the stress operator up to time t. 

Fig. 3:   Geometry of the volume of integration.

Letting R → ∞ and δ → 0 , one can appreciate that the vol-
ume integral extends over the entire space, excluding only the 
energized lamina (parallel to the x-y plane), and the surface 
integral is to be taken over the reflective lamina surface, which 
is treated as of infinitesimal thickness. Therefore:

  (14)

where is the unit normal vector to each surface of the re-
flective lamina, pointing inward.

A considerable simplification is achieved by recognizing the 
consequences of the planar surface maintained parallel to the 
x-y plane, motion solely in the z direction and the homogeneity 
and isotropy of the reflection coefficient. Further, the free field 
comprises field modes of all possible wave vectors and polari-
zation states. These characteristics ensure that the force acting 
on the field must have only a z-component. Thus:

  (15)

Finally, the average force on the reflective surface, denoted 
by , is:

  (16)

  (17)
Since , the only non-vanishing 

portion is shown in Equation (18) at the foot of the page.

Using the commutation relations, one obtains the result in 
Equation (19) at the foot of the page.

Or, more concisely:

  (20)

Next, the stress tensor term is considered. In the first term in 
(16),  is   for . 

Hence this term can be written:

  (21)

where in the last line, (13) has been used to evaluate  and 
the thickness, , has been assumed several wavelengths be-
yond the skin layer. Hence  and  are not zero. 
Each portion of the integrand is evaluated separately as follows:

  (22 a,b,c,d)
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where is the symmetrized Poynting vector operator: EVALUATION OF THE AVERAGE FORCE IN TERMS OF 

First, consider the second term in (16). Substituting (11), and (9):

  (18)

  (19)
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where  represents the evolution of the initial wave 
vector to its value at the space-time point .

 
Collecting results, the following expression is constructed:

  (23)

DECOUPLING DIRECTIVITY AND
 PROPAGATION – THE 1-D CASE

Recall that  represents the evolution of the electric 
field operator from the initial plane wave configuration in 
the vacuum state having wave vector k. For each half space, 

 and  there is an incident wave with wave 
vector k and a reflected wave, also planar. Since the objective 
is to determine such forces as are produced by a reflective sur-
face motion that is much larger than the wavelengths involved, 
this paper assumes that (1) the total amplitude of motion is 
much larger than a wavelength, (2) during the time required 
for the passage of one wavelength, the relative change in the 
surface velocity is very small. That assumption (2) is compati-
ble with (1) is discussed below in connection with a particular 
class of motions. 

With the above assumptions, consider the angular distribu-
tion of the integrands in the above expression for  with a view 
toward simplifying the calculation. 

To accomplish this, define spherical coordinates for the k 
space. In each half of position space, the polar axis is taken par-
allel to the z-axis, pointing toward the reflective surface for the 
incident wave and the opposite for the reflected wave. Denote 
the azimuth angle by ϕ and the co-latitude angle by θ. First con-
sider the k space integral in the first term of :

Because of assumption (1), cross-products of the incident 
and reflected waves contribute very little to the spatial integral, 
hence the quantity  is parallel to the 
wave vector of either incident or reflected wave, independently 
of polarization. At least in the non-relativistic approximation, 
the wave vectors of both incident and reflected waves are in-
clined by angle θ to the z-axis. Hence:

Similarly, in the relativistic case, the integral is distinctly 
weighted near θ = 0. 

Regarding the remaining integrals, if one averages over 
the uniformly distributed polarization vectors, the quantity

  (25)

  (26)

In this case, the integrand is weighted toward the wave vec-
tors with large inclinations to the z-axis. But by symmetry, 
these contributions to the force are negligible. Similarly, the in-
tegrals involving and  can be neglect-
ed. Finally, treating the remaining terms in the same fashion as 
the first term:

  (27)

In view of the above results, it is reasonable to approximate 
the electromagnetic field involved as one propagating along the 
z axis. Consequently, one can set:

  (28)

where  is a scalar function and  is in the x-y 
plane. Then we have the identities:

  (29)

Then, collecting results produces:

  (30)

EVOLUTION OF THE FIELD MODES,   

From the foregoing simplifications, it is clear that field am-
plitudes must be computed in two distinct half-spaces in the 
setting of a one-dimensional propagation problem. To adopt 
more precise notation, let:

  (31)

An Epitaxial Device for Dynamic Interaction with the Vacuum State

  (24)

 

has the angular dependence ½sin2 θ, thus:

where in this and what follows, . The   must 
satisfy:

The boundary conditions are:

  (32)

  (33)

Suppose that the surface  is created (turned on) 
at location  at time , then travels in the positive z 
direction with displacement  until it reaches  at 
time T at which point it is annihilated (turned off). For further 
reference, let  denote the continuous portion of . 
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  (34)

  (35)

which contributes nothing to the average force.

Consider first the solution to the wave equation for 
. This quantity is the evolution of the field when it is 

initially in the single mode . 

It therefore has both rightward and leftward traveling waves. 
Since there is a discontinuity at , , and 

 have the form:

  (36)

where the quantities  S+, and S–  are determined by:

  (37)

Since can be evaluated by the following se-
quence (convergent for all ξ):

  (38)

DETERMINATION OF THE AVERAGE FORCE

Evaluation of the Poynting Vector Term

In the notation of (31), introduced above, the first term given 
for the average force takes the form:

  (39)

It can be shown (see Appendix B) that the spatial integral 
in braces is:

  (40)

By assumption (1), after a brief initial transient 
, so that the cosine terms (with twice the spa-

tial frequency of the incident waves) contribute very little to 
the integral. This serves to illustrate the eikonal approximation 

  (41)

motivated by assumption (1).

In any case, letting  and using the relations 
, one can show that the above integral 

is identically zero. Thus, the Poynting term vanishes.

Evaluation of the Radiation Term

The second term in the average force has the form:

Differentiating the relations

  (42)

one may determine that:

where 

Inserting these into (41):

As this is the only remaining non-zero term, it follows that the 
average force per unit area is:

  (44)

  (45)

Obviously, when the velocity is constant, the force vanishes.

EXAMPLES OF VARIOUS MOTION CASES

  (46)

Note that if the velocity is constant, then as expected, the force 
is identically zero. Thus, some acceleration of the reflective sur-
face is needed. To study a family of simple examples, consider 
surface motions that are powers of time:

The reflective surface is turned “on” at time zero, accelerates ac-
cording to an integral power, N, of time, until time T at which it 
reaches its maximum displacement, , and is turned off. Note 
that both  and T have the dimension of length. The velocity 
may be written:

It is seen that  is the maximum attainable velocity during the 
maneuver, and is expressed as a fraction of the speed of light.

The first object for computation is the quantity , which 
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Obviously, for , the field is undisturbed and thus, by 
(33), must have the form:

One should also note the identities:
  (43)
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  (47)

  (48)

Fig. 4:   The Lambda integral versus maximum speed.

epitomizes the asymmetry in the field due to the reflective sur-
face motion. Substituting the above expressions:

  (49)

Clearly for N = 1  the above quantity vanishes. To evaluate 
it explicitly for N > 1, the two integrands are expanded as ge-
ometric series, then the integration performed term-by-term, 
with the following result: 

Thus  is solely a function of  and independent of  
. Fig. 4 shows the behavior of   as  increases for 

various values of  N. For  close to unity,  begins to diverge. 
For large N,  approaches an asymptotic limit (approx-
imated here by N = 20).

An Epitaxial Device for Dynamic Interaction with the Vacuum State

At this point, one might pause to consider the validity of 
assumption (2) given the condition  implied 
by assumption (1). The time required for a wave with initial 
wave number k, to travel one wavelength is . Under the 
current motion model, the change in the normalized velocity 
in that time interval, denoted by is given by:

In other words, the change of velocity over one cycle rela-
tive to the maximum speed is of the order of the ratio of the 
wavelength to the distance light travels over the entire duration 
of the motion. Since this analysis considers wavelengths of the 
order of microns, and motion sequences covering centimeters, 
both assumptions (1) and (2) are well justified.

CONSIDERATION OF THE
 THREE-DIMENSIONAL PROBLEM

Now consider the more general formulation, Equation (23), as 
expressed above in Equation 50:

One consequence of assumption (2) is that the above quan-
tities may be approximated by their running time averages over 
periods that include many oscillations, yet are still so short that 
there is little variation in the reflector surface velocity. Hence-
forth, it is understood that such averaging is to be applied. In 
each half space, and for a given incident wave vector, each of 
the two terms above has three contributions: One involving 
the incident wave alone, a second involving the reflected wave 
alone and the third composed of products of the incident and 
reflected waves. As in the one-dimensional formulation, and 
assuming the range of motion is much larger than the wave-
lengths involved, the third has a higher spatial frequency and 
averages out to a negligible contribution. Since only pairs of 
waves passing in the same direction survive the time averaging 
process,  and because all waves are planar (but not monochro-
matic), the field appearing in the force expression is described 
by the eikonal approximation (for propagation in a homogene-
ous medium):

  (50)

  (51)

  (52)

where  is any constant unit vector, and recall that  is or-
thogonal to the z axis and in the plane of z and the direction of 
propagation of the vacuum mode under consideration. Substi-
tuting the above results into the force expression (50), noting 
that the integrands are independent of the polarization vector, 
and replacing  with , the force becomes:

  (53)

In consequence of the assumptions, one can show that the 
first term vanishes. First, for each inclination angle of the inci-
dent waves, no tangential component of force can be produced 
by specular reflection without violating the idea of relativity. If 
this were possible, one could measure the force in its rest frame 
and deduce the reflective surface velocity relative to a nonexist-
ent “ether”. Thus, on both sides of the surface, the net momen-
tum change is along the direction of motion. The direction is 
positive for the left side and negative for the right.

Next consider the change in the spatial integral of the mo-
mentum density over a period of many oscillations but dur-

Then one obtains: 



400

  (56)

  (57)

  (59)

If  β is the angle of reflection corresponding to the angle of 
incidence, θ , then the absence of a tangential component of 
force implies that . This, in turn, per-

  (61 a, b)

  (62)

  (63 a, b)

mits the conclusion that . 
As a result of the foregoing simplifications, the expression for 
the force becomes:

where  and  are the wave vectors of the re-
flected waves. Next, as above, it is assumed that the variations 
of the reflected wave amplitudes over several wavelengths are 
very small. Then the formulae related to the uniform motion of 
a mirror [20, 21] may be used:

Then making substitutions into (55), one concludes:

Since the time variable has units of length, one can 
convert to integration along the z-axis. For the regions 

, and , only in-
cident waves exist which contribute nothing to the momentum 
change. Adjusting the limits of integration accordingly, the in-
tegrals become:

The result for the force becomes:

D.C. Hyland

ing which the velocity change is negligible. Then, in the rest 
frame, the approximations for uniform motion apply. In this 
frame, the space-time factor of the vacuum state remains the 
same, and one can define the inclination angle of the incident 
waves as having the same amplitude, but opposite directions. 
Since the rest frame presents negligible asymmetry, the reflect-
ed waves must be very nearly symmetric with respect to the 
surface and have equal and opposite components along the z 
axis. Therefore, within the approximate formulation, the rate 
of change of the spatial integral of the Poynting vector is neg-
ligible (and, rigorously, identically zero). Likewise, the average 
energy of the field can be shown to be unchanging.

  (54)

  (55)

  (58)

where  and  are given by:

If the velocity is constant, the force is zero. Let  
then:

  (60)

and the integrals in the above force expression become:

In the integral of the first term, the sign of the cosine can be re-
versed. Therefore the integral of the first term is equal and op-
posite in sign to that of the second term and the force vanishes. 

APPROXIMATION FOR HIGH- 
AND LOW-SPEED SCANS

Since the epitaxial device is intended to both increase the am-
plitude, and the speed of  the reflective surface motion it is well 
to consider the case where V is a significant fraction of unity. 
Let V = 1 – v, and v << 1. Then the relations for the reflection 
angles yield:

Secondly, note that . 

Let the incident wave vectors both form angle θ with the z 
axis, and let β1 and β2 be the inclination angles of the reflected 
wave vectors in the regions z < q and  z ≥ q, respectively. Then, 
considering only the τ integrals for the moment:
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  (64)

  (65 a, b, c)

  (66)

  (67 a, b, c)

  (68 a, b)

  (69)
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Using these inequalities and the above approximations for the 
reflection angle cosines, one obtains an upper bound for the 
spatial integral:

Substituting this into the force expression, and performing the 
integration over θ yields:

The expression in the bracket obviously vanishes when V is 
constant. This lower bound is identical to the magnitude of the 
one-dimensional approximation.

On the other hand, assuming V << 1 , an upper bound can 
be discerned:

The force expression then yields:

AVERAGE FORCE IN THE CASE OF PERIODIC SCANS

One could create a periodic disturbance by repeating the sur-
face displacement waveform. However, if the motion is imme-
diately repeated at the end of a cycle, there will be interaction 
between the newly created waves and the reverberant wave still 
crossing the segment . Such interaction ceases if one 
waits for time  to begin the new cycle. The momentum in-
crement will then be the same for each cycle. The following 
analysis adopts the one-dimensional approximation for the 
Casimir force, (65). Fig. 5-a shows, schematically, the cyclic 
surface position waveform so produced. By momentum con-
servation, the force on the mirror device is the negative de-
rivative of the momentum change, which is proportional to 

. This is illustrated in Fig. 5-b. Note the negative di-
rection of the force.

Using Equation (65), and setting the total duration of the 
cycle equal to  one concludes:

At this point it is well to examine the effect of various pa-
rameters on the force produced, and perhaps reformulate their 
definitions. At the outset, it was assumed that the reflection co-
efficient was unity (perfect reflection) up to some wave number 
cutoff beyond which it is zero (perfect transparency). A some-
what more realistic, albeit still crude, model is that:

where kU > kL. With this expression, the wave number integral 
can be seen to be:

  (70)

Fig. 5:   (a) Cyclic waveform of the reflective surface position; (b) Force on the epitaxial device.

 represents the approximate middle (weighted heavily at 
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  (71)

Fig. 6:   Force per unit area as a function of the maximum 
waveform velocity, integer powers.

Fig. 7:   Force per unit area as a function of the maximum 
waveform velocity, fractional powers.

CONCLUDING REMARKS

This paper re-examines the dynamic Casimir effect as a pos-
sible mechanism for propulsion. Previous investigations as-
sumed mechanical motion of a mirror to generate thrust. In 
this case, because of the finite strength of materials and the 
high frequencies necessary, the amplitudes of motion must be 
restricted to the nanometer range. Here, an epitaxial stack of 
transparent semiconductor laminae is proposed, where voltage 
is rapidly switched to successive laminae, thereby creating con-
tinuous motion of a front of charge carrier density. The result 
is the creation of a reflective surface in rapid, large amplitude 
motion without the use of mechanical contrivances. Since pre-
vious analysis of the propulsive effect was restricted to motions 
much smaller than the wavelengths of importance, it was nec-
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essary to derive correct relativistic expressions appropriate for 
large amplitude motion. This was accomplished for the general 
motion case and examined in detail for a variety of possible 
motions. All calculations assumed an initial zero temperature 
state. Another restriction is that detailed dielectric function 
models were not used; rather the reflectivity was based on a 
simple wave number cut-off model. Moreover, as for previous 
workers, the treatment is semi-quantum in that the epitaxial 
stack is modeled as a set of prescribed boundary conditions 
on the field operators. Despite these restrictions, if reasonable 
charge carrier volumetric densities are assumed, the propulsive 
forces may be quite significant. The assumption of finite tem-
perature and surface velocities that are a significant fraction 
of the light speed may possibly increase the magnitude of the 
present estimates.

the upper end) of the useful band wherein reflectivity/transpar-
ency can be switched on and off, and  is the width of this 
band.

Another parameter of interest is . This is 
the average speed, relative to c, that the activated laminae sweep 
through the total period of the waveform. Finally,  is di-
mensionless, depends only on the normalized velocity profile, 
and is of order unity unless V is nearly unity. To summarize:

EXAMPLE: PERIODIC MOTION 
WITH POWER LAW WAVEFORMS

Here some numerical examples are shown, involving the wave-
forms proportional to an integer power of time, treated earlier, 
with  denoting the maximum velocity of the reflective surface. 
To appreciate the magnitude of the force per unit area, assign 
plausible values to the various parameters. Suppose the plasma 
frequency is in the range 1014 Hz  to 1016 Hz. Specifically, let us 
fix  and set . 
Note that since , it follows that . Hence 
the average force depends only on the maximum speed and the 
power law exponent.

Fig. 6 shows the variation of the force with maximum speed 
for integers powers, N = 1 to 7. Similar results are shown in Fig. 
7 for fractional powers between 1.1 and 2. It appears that for 
any given maximum speed (below c), an approximately quad-
ratic velocity yields the maximum force per unit area. 
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  (A-1)

APPENDIX A

The finite response time of a semiconductor lamina allows us 
to create a continuously moving “front” at which the cumula-
tive areal density of charge carriers suffices to produce a desired 
level of reflectance. Thus, although the laminae are discrete, 
their sequential stimulus at the proper rate yields the effect of a 
continuously moving mirror.

As an illustration, suppose that the conductivity, , in re-
sponse to a voltage pulse has a simple linear rise and fall, as in:

Fig. A-1:   Temporal progression of conductivity as the laminas are successively pulsed. The blue-shaded boundary indicates the 
continuous motion of the front having a particular value of reflectance.

An Epitaxial Device for Dynamic Interaction with the Vacuum State

where  is the finite rise time and  is the impulse re-
sponse of the lamina conductivity. Suppose each successive 
lamina is stimulated at a sub-multiple of the rise time after its 
immediate predecessor, such that each rise in the reflectance is 
a small fraction of of complete reflectivity. Fig. A-1 illustrates 
the resulting motion of the conductivity profile. An incom-
ing plane wave suffers a cumulative reflection in proportion 
to the total charge carrier population per unit area along its 
path. In the example of the figure, the total areal population 

corresponding to some reflection coefficient, |R(k)|, is suggest-
ed by the gray-shaded areas. In general, the position of the 
“front” along which the total reflectance reaches some value 
is seen to move continuously in the direction of, and with the 
approximate speed of, the conductivity profile (illustrated by 
the blue-shaded boundary in the Figure). Even if the charge 
carrier profile has the staircase form as shown in the Figure, 
the Courant-Friedrichs-Lewy condition can be satisfied so 
that the effective conductivity profile approximates a con-
tinuously increasing distribution. This permits the device to 
approximate the reflective properties of a mechanical mirror, 
including the relativistic Doppler effects. Moreover, remaining 
discretization effects can be mitigated by designing a suitable 
charge carrier gradient for each lamina. Because of length lim-
itations, detailed proofs of the foregoing results must be de-
ferred to a later manuscript.

To assess the achievable front speeds, consider the example 
of Fig. A-1 where the time between inputs to successive lam-
inas is a third of the rise time. Then the average speed of the 
reflective surface is  where  is the lamina thickness. 
Taking a typical rise time of 10-9 s and a lamina thickness of a 
millimeter, obtains a reflective surface speed of ~3x10-3 m/s, 
i.e.,  0.1. This could be significantly improved by advanced 
high-speed switching technology.
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Then we have:
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