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This paper re-examines the dynamic Casimir effect as a possible mechanism for propulsion. Previous investigations assumed
mechanical motion of a mirror to generate thrust. In this case, because of the finite strength of materials and the high frequencies
necessary, the amplitudes of motion must be restricted to the nanometer range. To permit larger amplitudes, an epitaxial stack
of transparent semiconductor laminae is proposed. Voltage is rapidly switched to successive lamina, creating continuous, large
amplitude motion of a reflective surface without mechanical contrivances. The paper provides relativistic results for large
amplitude motion. With centimeter-level magnitudes, propulsive forces are raised to significant levels.
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INTRODUCTION

More than 60 years ago, H. B. G. Casimir [1], and Casimir and
D. Polder [2] explained the retarded van der Waals force in
terms of the zero-point energy of a quantized field. Both the
static and dynamic Casimir effects are discussed in several re-
views [3-7]. This work is concerned with the dynamic Casimir
effect, which involves the interaction between moving mirrors
and the ground state (“vacuum state”) of the electromagnet-
ic field. In particular, following Maclay and Forward, [8], the
present analysis is motivated by the possibility of a propulsive
mechanism.

When estimating the magnitude of the force that could be
generated, Maclay and Forward assumed that the amplitude
of high frequency motion of an actual mirror need be in the
nanometer range due to the finite strength of materials. This
restriction limits the possible propulsive force to very small
values. However, this author observes that motion of a single
reflective surface is not essential: that the Casimir effect is due
to the motion of the boundary conditions constraining the free
field in its ground state. The advent of amorphous oxide, trans-
parent semiconductors used for thin film applications [9-14]
suggests the possibility of achieving large motions of reflective
surfaces without mechanically moving parts. The proposed ep-
itaxial assembly of semiconductor laminae, is illustrated in Fig.
1. Without the application of voltage, each lamina is a partially
transparent dielectric; but when supplied by voltage it becomes
a reflecting conductor serving as a mirror. Voltage inputs can

Voltage
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Reflective
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Fig. 1: Epitaxial stack of semiconductor lamina.
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be switched among the laminae at high speed, effectively mov-
ing the mirror at high velocities and accelerations without the
use of moving parts. Thus motions of the reflective surface that
have both high frequencies and large amplitudes can be pro-
duced. In a treatment of the pressure on moving mirrors due to
the Casimir effect, Neto and his colleagues 7], took a pertur-
bative approach consistent with the assumption that the mirror
motion be constrained to very small amplitudes. The objectives
of this paper are to extend the analysis to large motions and
the epitaxial approach described above; to obtain explicit ex-
pressions for the forces produced by a particular trajectory of
motion; and to estimate the numerical values of these forces.

It is assumed that within certain wavelength bands, the re-
flectivity of each lamina can be set within a continuous range
from completely reflective to completely transparent. The lam-
inae are also characterized by a finite response time. These fea-
tures can be combined so that when the laminae are sufficient-
ly closely spaced, and their energizing processes are properly
phased, multi-laminae propagating wave of reflectivity can be
created that sustains the properties of a continuously moving
mirror (see Appendix A). In the following, the multi-laminae
phasing wave is treated as a single, perfectly reflecting surface.

FUNDAMENTAL DEVELOPMENT

Define a coordinate system, (x, y, z), with unit orthogonal basis
vectors (X,¥,2). Consider the case in which surface p(z)is a
section of a plane having area A and parallel to the x-y axis, as
illustrated in Fig. 2. Its motion is along the z axis with z-coordi-
nate ¢(f), where ¢(r) €[ 0,Z ). Before the reflectivity is “turned
on” at t = 0, the field is in the vacuum state. Also, the surface
starts a cycle of motion coinciding with the x-y plane, so that
q(t=0)=0.Tt is assumed that Z < /4, so that one may treat
the conductive surface and the field it produces without ac-
counting for edge effects. In the following the x-axis is defined
to be perpendicular to z and in the plane formed by z and the
direction of propagation of the plane wave associated with a
particular vacuum state mode.



For simplicity in this initial development, the surface is pre-
sumed to be either perfectly reflecting or perfectly transparent,
depending only upon the wave number. This is modelled
as a scalar function, R(k) = 1 (reflective), R(k) = 0 (transparent).

Fig. 2: Geometry of the motion of the conductive surface.

As a minimum, a model of R(k) should capture the fact
that any conductive material is transparent to radiation that
has frequencies above the plasma frequency, w,. Following the
Drude-Sommerfeld model [15-17], the upper limit of the wave
number might be some fraction of:

_wp/c

o, - 47:11:62 (=8980, Hz)

(1a,b)

where m* is the effective mass of the charge carriers, e is the
elementary charge, and #, is the volumetric number density of
the charge carriers. w, may be typically =10 Hz, and the value
for metals can be a hundred or even a thousand-fold larger. The
simplest model has the form:

R(k):{l,k<k @)

0, otherwise

(2) is essentially a formal regularization since the details of
the dielectric function of the materials, the effects of absorp-
tion, and the semiconductor design and parameters are ig-
nored. The reflective properties are conceived to be homoge-
neous and isotropic.

To begin the analysis, the notational conventions of [18] are
followed. Also, the continuous Fock space approach to quantiz-
ing the electromagnetic field [19] is adopted. The electric field
operator in empty space and in the absence of boundaries is
given by:

E(r0)=— = 3 [ 2% [a(k,5)e(k,s)e™ ) —he |dk
’ (3)

where ¢, is the vacuum dielectric constant. Quantities in bold
type are 3-vectors, and a carrot over the symbol indicates a
quantum operator. “h.c” stands for “Hermitian conjugate”. k is
the continuous wave number vector and w is the angular fre-
quency, where w(k) =ck, k=||K]||. € (k, s), s=1, 2 are the polariza-
tion vectors obeying the orthonormality requirements:

k-s(k s):O, (s:l 2)

& (k,s)e(k,s') =0, (s.5'=12)
xs(k,

e(k.1)xe(k,2) =k/k 2 x

(4a,b,c)

&€
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The terms d(k, s), and d'(k, s) are the annihilation and cre-
ation operators for field modes of wave vector k, and polariza-
tion s. These obey the commutation relations:

[a(k,s), ") ]:53 (k-K')35,,
[a k .8’ ] 0
[aT( ,s ,a k', s’ ]:0

Equation (3) describes the free electromagnetic field, which
is taken to be the condition of the field at the initial instant, t =
0. Note that the quantized fields are coupled by the same Max-
well Equations as the classical fields from which they came, i.e.:

0 - 1 0~
,t):—EB(r,t ,t):c—zaE(r,t)

V-l::(r,t ) =0 (6 a,b,c,d)

(5a,b,c)

Vx]:I(r ). Vxﬁ(r

)=0, Voﬁ(r,t

Since the time dependence of all terms in (1) is ™/, one can
substitute (1) into (4.a) and integrate with respect to time to
obtain:

ﬁ(r,t)—

(27) 5

ZZI ZCkg [‘A’(kb)(vxs(k ) e krm))+h.c-]d3k
(7)

Because the only spatial dependence in the free field is €™
the V x g(k,s)e™" ) term can be replaced by ik x g (k,s) """ ),
Thus, in the free field, the magnetic field operator is:

ﬁ( r,t 2”) ZI che [ ks)(kxs(k s)) i(ker-or) h.c.]d'ﬁ
(8)

The Heisenberg picture, in which the initial state is fixed and
it is the operators that evolve in time, is chosen for the present
analysis. It is assumed that the field is initially (at time t = 0 )
in the free-field state; thus (3) and (8) give the initial values of
the electric and magnetic field operators. The operators then
evolve according to the Heisenberg equations of motion. How-
ever, these are equivalent to the Maxwell operator equations,
(6), (see [18], Art. 10.4.5).

As (3) and (8) indicate, to determine the electric field oper-
ator beyond t = 0, we need only consider the time evolution of
the operator d(k,s)s(k,s)e™" ). Hence beyond t = 0, (3) and

(8) become:
E(r.1) j [ il )—he.]dk ©)
ﬁ(r’f)‘ﬁ, | e [(de’h(r,f)c}(k,s)+h.c‘)]d"k

@, (r,7) is a vector-valued function satisfying the wave
equation derived from (6), all boundary conditions for t = 0,
and the initial condition @, , (r,7 =0) =¢(k,s)e™". @(r,7) rep-
resents the evolution of the initial wave vector to its value at the
space-time point (r,7).

The Lorentz force operator per unit volume on the field, £, is
the primary object of attention:
- AN A - - i Ay - - A
—] VsE Y | | Ve + L]
f=s [( E)E+(E )E} e [( B)B + (B V)B}
X (10)
1 1~ s
- EV[S E? +ZB ]—go,un =
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where S is the symmetrized Poynting vector operator:
N 1 ra A - A -
S=—/|E(r,)xB(r,t)-B(r,t)xE(r,?
2ﬂo[()()()(), (11)

Define volume Vs enclosed by surface Sg, as in Fig. 3. In-
tegration of (11) over this volume and use of the divergence
theorem, produces:

= I fdr’ = g—O%I:th J. é'nym dSy 5 — &ty
Vr.s

Vs

i Q 7.3
v Vj Sdr' (15
where @ is the Maxwell tensor operator:

(&), == (BE, ~38,E%) v (B, 16,)] 03
and where -L dr},;[ &y, Brs

“ is the total momentum produced
by the stress operator up to time t.

Fig. 3: Geometry of the volume of integration.

Letting R - oo and § > 0, one can appreciate that the vol-
ume integral extends over the entire space, excluding only the
energized lamina (parallel to the x-y plane), and the surface
integral is to be taken over the reflective lamina surface, which
is treated as of infinitesimal thickness. Therefore:

3
F, ()= - le. dTI 6en,, dS, — &4, — I Sd’r (14)
where n, is the unit normal vector to each surface of the re-
flective lamina, pointing inward.

A considerable simplification is achieved by recognizing the
consequences of the planar surface maintained parallel to the
x-y plane, motion solely in the z direction and the homogeneity
and isotropy of the reflection coefficient. Further, the free field
comprises field modes of all possible wave vectors and polari-
zation states. These characteristics ensure that the force acting
on the field must have only a z-component. Thus:

~ ~ &
=3 _%
' = 22K, =

. diaas
= dTI zegen,,, dSpfso,uoz'fz-Sd r (15)

Finally, the average force on the reflective surface, denoted
by (£), is:
<F) =gy ——I dr I (mclz-u’-n mlmc)
o) (16)

+ &y %J-(\-‘acl 2:S|vac)d’r

EVALI(JATI)ON OF THE AVERAGE FORCE IN TERMS OF
D (r,1

First, consider the second term in (16). Substituting (11), and (9):
Eoly §j<vac[2-§|vac)d3r =
t

3
(K,5")a(k,s) [rackt’r
S

(r.1)
(r.1)

7 54 IZZId k-[dSkIf vac| -, Er,t;x Vx®,, . (r,t))
(r.1) )
(r.1)
(r.1)

(17)
Since a(k)|vac) =(vac|a (k)=0, the only non-vanishing
portion is shown in Equation (18) at the foot of the page.

Using the commutation relations, one obtains the result in
Equation (19) at the foot of the page.

Or, more concisely:

28

d
Eo o 7 I (vac wm) d’r (20)

,Zjd:jd Mm[ . ()% [vxq:'h(r,r))}

Next, the stress tensor term is considered. In the first term in
(16), m, is —Z for z = q(1)+¢,and +z for z=¢q(1)-¢.

drz

Hence this term can be written:

& d

o 4 [“gr [ (vaclingon, [vac) s, o)

#{r)

=hZ : dr [ A (w:cl G |vac)___q_ —&,4 (mcl [ I\’ac)___q‘ J

S (vac] - (£2 + B2 - £2) -

= % J- dr c? (Bf - Bf —1;‘1 )|1'nc)___v_s__
S o

where in the last line, (13) has been used to evaluate (8)_ and

the thickness, ¢, has been assumed several wavelengths be-

yond the skin layer. Hence (£,). ... and (£ (£ ),, are not zero.

Each portion of the integrand is evaluated separately as follows:

<vac|E |vac ZIk

& s=1

s}jk|(l>ks(r 0

hf
2(27[)
c (vac|B |vac ZJ.

27[.971

2@,  (r,1) |dk

<vac|lEA’X2 +l:ff |vac) =

} —<vac|]2‘f |vac)

70 V><'£I>kI

(rn)) @

c <vac|B +Bz|vac d k—c (vac|B |vac)

k_v ’
&y s=1

(22 a,b,c,d)
Eoldy %I(vac|i-§|vac>d3r
_Z.E4 I;;Idkj.dk'\/j[ S )(Vx(l) ( )) @, ( )(Vx(l) ( )):|<vac|&(k,s)&f(k's')|vac>d3r (18)
(&‘Oyogj.@aci-évac)dr——zE4 ZI Idk[ ks r.t (Vx(I) ( )) (I);S( )(Vx(l) ( )):| (19)

396



(F)=2

2 d’kR (k) Tm

where k = @(r,)/c represents the evolution of the initial wave
vector to its value at the space-time point (r,7).

Collecting results. the following expression is constructed:

o d §_ s
a mamfz“ r[dk R(k)Im[ @, , (r.0)%(Vx @', , (r.1))]
iF, I . irr s (23)
2(2x) At s

x g[‘[‘:“i.q’“ {I‘.I)|3 +|5’-¢k, [r_;]r _|i,¢.“ [r‘”r}:-qu; R[F{]:‘fsﬂ'

+J’i“ (T, () =[xy, () [2o(Vx g, (. f})[ L2 R(k)d*¥]

DECOUPLING DIRECTIVITY AND
PROPAGATION - THE 1-D CASE

Recall that @, (r,?) represents the evolution of the electric
field operator from the initial plane wave configuration in
the vacuum state having wave vector k. For each half space,
z>q+¢ and z < q—{¢ there is an incident wave with wave
vector k and a reflected wave, also planar. Since the objective
is to determine such forces as are produced by a reflective sur-
face motion that is much larger than the wavelengths involved,
this paper assumes that (1) the total amplitude of motion is
much larger than a wavelength, (2) during the time required
for the passage of one wavelength, the relative change in the
surface velocity is very small. That assumption (2) is compati-
ble with (1) is discussed below in connection with a particular
class of motions.

With the above assumptions, consider the angular distribu-
tion of the integrands in the above expression for with a view
toward simplifying the calculation.

To accomplish this, define spherical coordinates for the k
space. In each half of position space, the polar axis is taken par-
allel to the z-axis, pointing toward the reflective surface for the
incident wave and the opposite for the reflected wave. Denote
the azimuth angle by ¢ and the co-latitude angle by 0. First con-
sider the k space integral in the first term of (£):

z J-d ER( ]hn[tbk_,[r.:)x[VxQ'k__,(r.r))J (24)

= [agf" smedaj dkR (k) Tm| 2+(@,., (1.1) % (Vx @7, , (r.1)))]

Because of assumption (1), cross-products of the incident
and reflected waves contribute very little to the spatial integral,
hence the quantity ®, (r,t)x(Vx(I)'kﬁ (r,t)) is parallel to the
wave vector of either incident or reflected wave, independently
of polarization. At least in the non-relativistic approximation,
the wave vectors of both incident and reflected waves are in-
clined by angle 0 to the z-axis. Hence:

I:(I)k,s (r,t)x(Vx(I)'ka (r,t))] (25)

= ZﬂJ.:/Zsin Hcosﬂdg_‘fdkR(k)kz Im[i.(q)ks( t)x (VX(I) (r )))k’”‘i}
=[] dk R(k) 3@, (r.0)x(Vx ", (1)), ]

Similarly, in the relativistic case, the integral is distinctly
weighted near 6 = 0.

Regarding the remaining integrals, if one averages over
the uniformly distributed polarization vectors, the quantity
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ka

has the angular dependence Vasin? 0, thus:

3 [k, (x.1)

sul

2@, ( R(k)d*k

r.t 7=q+S¢

_[ dqﬂj sin 6’d6I dk R(k)& mm;lz D, [r.r}l;_s‘_

In this case, the integrand is weighted toward the wave vec-
tors with large inclinations to the z-axis. But by symmetry,
these contributions to the force are neghglble Similarly, the in-
tegrals involving |z-(V x®, (r :)]| and |z.®, | (r ;)| can be neglect-
ed. Finally, treating the remammg terms in the same fashion as
the first term:

[H{se(v o, () + <7, (r,,))r}km R
(v (m)f sfio(vxo, (of |

=27 jo”/ *sin0cos’ 0d6 _‘fdkR(k)k mfx{|§;.(v <@, , (r.10))[ +[3o(V <@, (r,t))r}

(27)
= [ ag[sinoao]” akr(k)k {]x

2248,
- jfdkR(k)k {|§z.(de>m (r,z))]Z +[g(vx@,, (r,t))r} }
k=2
In view of the above results, it is reasonable to approximate
the electromagnetic field involved as one propagating along the
z axis. Consequently, one can set:

@, (r,1)=0, (r,1)e(k,s)

where @, (r,z) is a scalar function and g(k,s) is in the x-y
plane. Then we have the identities:

(28)

@, (r.0)x(Vx @} (r,1)) =@, (r,1) VD] (r,7) (29)
(Vx@,, (r0) +(Vx@,, (r.0)) = ’gd)k (r,t)2
Then, collecting results produces:
(F)=4 jfr ditj dk (k) [ dz m[ @, (r,1) VO (r,1)] (30)
_ 16( < SZISJ‘ dk R(k)K* {13|<1>k (r,0)] +% 6—id>k (r,z)z}ws{

EVOLUTION OF THE FIELD MODES, ®, (Z,t )

From the foregoing simplifications, it is clear that field am-
plitudes must be computed in two distinct half-spaces in the
setting of a one-dimensional propagation problem. To adopt
more precise notation, let:

o, (z7)- | DemlErha=ila<alr) =y
®, ,;(z7),a=-1z>q(r)+{

where in this and what follows, 7 = ct. The @, (r,7) must

satisty: 5

— @, = (o}
o Ot (27)= 57 P (27) (32)
®,, (z,7=0)=€""
The boundary conditions are:

D, (z=9(r).7)=0,a=+1 (33)

Suppose that the surface @ = (x, y) is created (turned on)
at location z=0 at time 7 =0, then travels in the positive z
direction with displacement ¢ (z’) until it reaches z =Z at
time T at which point it is annihilated (turned off). For further
reference, let ¥/ (z) denote the continuous portion of dg/dz.
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Obviously, for |z|> 7, the field is undisturbed and thus, by
(33), must have the form:

D, (z,z’):exp(ik(azfz')), a=-1+1 (34)
which contributes nothing to the average force.

Consider first the solution to the wave equation for
D, (Z, T). This quantity is the evolution of the field when it is
initially in the single mode ®,,, (z,7 = 0) = exp(ikz).

It therefore has both rightward and leftward traveling waves.
Since there is a discontinuity at z=g¢(7), ®,,,(z,7), and
@ _,, (z,7) have the form:

exp (ik(z - T)) —exp (ikS+ (-z- T)),Z <q(r)

. (27) _{ t22>4(7)
) {exp(lk(—z 7)) —exp(ikS_(z—7)),z 2 q(7)

[O) T
2wl 0,-7<z<q(r)

(35)
where the quantities S,, and S_ are determined by:

S, (=q(z)-7)=aq(r)-7. S (q(z)-7)=-q(r)-z  (36)

Since |q(f)|<ct, S, can be evaluated by the following se-
quence (convergent for all £):

S, (§)=¢+2limg(¢, . ) (37)
§io ==6F9(&). k21
S =-¢
One should also note the identities:
$,(0)=0  Jim {S, (£)}=0 (38)
S (0)=0 fliﬁl})lﬁ{s (&)} =—2

DETERMINATION OF THE AVERAGE FORCE
Evaluation of the Poynting Vector Term

In the notation of (31), introduced above, the first term given
for the average force takes the form:

4_—j dk R(k)K* [ dz Tm[ @, (r.1) VD (r.1)] (39)

a=-1

_: Im[CDa,{ (z.7) 6—02 @, (2, r)]dz}

+1
A~—— dAR k2
27 dt 70 ) {z

It can be shown (see Appendix B) that the spatial integral
in braces is:

Z‘ I Lm[ i_l]};k (s r)]a’: (40)
[as.(%.) —1}
ox

= —"J:w'_:dz‘gl —cos(k(z. —2r-5, (2 m]

S i [l—cos(k(z, +2r-S_(x m}{%{'}—l}

glri=r

By assumption (1), after a brief initial transient
r+¢(7) > 27/k, so that the cosine terms (with twice the spa-
tial frequency of the incident waves) contribute very little to
the integral. This serves to illustrate the eikonal approximation
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motivated by assumption (1).

In any case, letting I', =S, — 7, and using the relations
S, ($q (7)- r) =+¢(7)—7, one can show that the above integral
is identically zero. Thus, the Poynting term vanishes.

Evaluation of the Radiation Term

The second term in the average force has the form:

‘7 . (r. t)z} (41)
jE ;{J‘idf[n&'(—q—f)}—j;df[nsj (q—i-):|}

Z S| dk R(k)k | k|@, (r,0)
-1

he
16(z)’ drI
he

;ij:dkR(k)

Differentiating the relations
s S, (—q(‘r) —r) =q(r)-r,
one may determine that:
ol <20 )
Si(-a(®) T)_1+V(r)’ $(a(2) T)_I—V(r) (42)
dq(r)/dr.
Inserting these into (41):

—AW j S;sj dk R(k ‘—

S (a(e)-7)=-a(2)

where V (7)=

2=q+5¢
- AL [k R (k

ey bk b o] [ )

he @ d ( q 1
=A—— | dkR(k)k® —
8(71')2 '[0 (k)

dr{LﬁnV(le) _J;dfl—V(T—f)} (43)

As this is the only remaining non-zero term, it follows that the
average force per unit area is:

3 i T T
(DF L(a()A(7)) "

he

(E)a= 25 [ arr
A(r):

1

a0 1 [ 1
q(,[) {.[r( )drmijq(r)dr l—V(r—f)}

Obviously, when the velocity is constant, the force vanishes.

EXAMPLES OF VARIOUS MOTION CASES

Note that if the velocity is constant, then as expected, the force
is identically zero. Thus, some acceleration of the reflective sur-
face is needed. To study a family of simple examples, consider
surface motions that are powers of time:

q(r):Z(r/T)N,re[O,T] (45)

The reflective surface is turned “on” at time zero, accelerates ac-
cording to an integral power, N, of time, until time T at which it
reaches its maximum displacement, Z, and is turned off. Note
that both Z and T have the dimension of length. The velocity
may be written:

V(r)= V(T)N !

It is seen that ¥ is the maximum attainable velocity during the
maneuver, and is expressed as a fraction of the speed of light.

,V =NZJT (46)

The first object for computation is the quantity A(z = T'), which
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<FZ>,_ .52(2”)3 ZIC” [d*kR(k [ s (1) x (VX @7, (r,t))] (50)
h d rct 2 J.I;{ ﬁ.q)k"‘ (r’t)r + y.q)k's (r’l‘)|2 - i.q)k’s (r’t)|2}z:q+SC R(k)d3k
E 2(27T)4 ZJ.O Tszl:lszl: 2 s 2 s 2 3
: +I {x- Vx®,, (r, ))| + y-(Vx(I)k,S (r,t))| - z-(Vx(I)k’S (r,t))| }z:q+s¢ R(k)d’k

epitomizes the asymmetry in the field due to the reflective sur-
face motion. Substituting the above expressions:

1 ¢z . 1 T 1
A(T:T):7 Jlrdr T 71—I2dr —
1+V 1-V
5 [

‘f N-1
r-Z j (47)
Clearly for N =1 the above quantity vanishes. To evaluate
it explicitly for N > 1, the two integrands are expanded as ge-
ometric series, then the integration performed term-by-term,
with the following result:

0#{(” [%”H%_Iﬂ (48)

Thus A(z =T) is solely a function of ¥ and independent of
Z . Fig. 4 shows the behavior of A(z=T) as J increases for
various values of N. For 7 close to unity, A begins to diverge.
For large N, A(z = T') approaches an asymptotic limit (approx-
imated here by N = 20).

>
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Fig. 4: The Lambda integral versus maximum speed.

At this point, one might pause to consider the validity of
assumption (2) given the condition 7+¢(7)> 27/k implied
by assumption (1). The time required for a wave with initial
wave number k, to travel one wavelength is 27/kc. Under the
current motion model, the change in the normalized velocity
in that time interval, denoted by AV is given by:

AVV (N-D)Z (TJH (49)

In other words, the change of velocity over one cycle rela-
tive to the maximum speed is of the order of the ratio of the
wavelength to the distance light travels over the entire duration
of the motion. Since this analysis considers wavelengths of the
order of microns, and motion sequences covering centimeters,
both assumptions (1) and (2) are well justified.

CONSIDERATION OF THE
THREE-DIMENSIONAL PROBLEM

Now consider the more general formulation, Equation (23), as
expressed above in Equation 50:

One consequence of assumption (2) is that the above quan-
tities may be approximated by their running time averages over
periods that include many oscillations, yet are still so short that
there is little variation in the reflector surface velocity. Hence-
forth, it is understood that such averaging is to be applied. In
each half space, and for a given incident wave vector, each of
the two terms above has three contributions: One involving
the incident wave alone, a second involving the reflected wave
alone and the third composed of products of the incident and
reflected waves. As in the one-dimensional formulation, and
assuming the range of motion is much larger than the wave-
lengths involved, the third has a higher spatial frequency and
averages out to a negligible contribution. Since only pairs of
waves passing in the same direction survive the time averaging
process, and because all waves are planar (but not monochro-
matic), the field appearing in the force expression is described
by the eikonal approximation (for propagation in a homogene-
ous medium):

@, , (r.7)=exp(i(k(z)r —kz))e(k(r),s) (51)
Then one obtains:
tm[ @, (r,1)x (vm  (r.)) | = Fexc(r,0,7) (52)
i{jwa,, (r,t)r} = (v <, () = k|(u—(Rou)u)erc(r,0,7)0]

x(r,0,7)=Kk(r,0,7)/k

where u is any constant unit vector, and recall that X is or-
thogonal to the z axis and in the plane of z and the direction of
propagation of the vacuum mode under consideration. Substi-
tuting the above results into the force expression (50), noting
that the 1ntegrands are independent of the polarization vector,
and replacing d’k with 27sin@d@k’dk, the force becomes:

{ﬁ;): L2 Id’kﬂ{k K[ dosino-- jdzm (r.0.7) (53)

B {kc jd;j_-k k.llhdfjsmﬁ Ia‘ ZSU“K[rGr“ Zix-x{rt?!']” :|

In consequence of the assumptions, one can show that the
first term vanishes. First, for each inclination angle of the inci-
dent waves, no tangential component of force can be produced
by specular reflection without violating the idea of relativity. If
this were possible, one could measure the force in its rest frame
and deduce the reflective surface velocity relative to a nonexist-
ent “ether”. Thus, on both sides of the surface, the net momen-
tum change is along the direction of motion. The direction is
positive for the left side and negative for the right.

Next consider the change in the spatial integral of the mo-
mentum density over a period of many oscillations but dur-
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ing which the velocity change is negligible. Then, in the rest
frame, the approximations for uniform motion apply. In this
frame, the space-time factor of the vacuum state remains the
same, and one can define the inclination angle of the incident
waves as having the same amplitude, but opposite directions.
Since the rest frame presents negligible asymmetry, the reflect-
ed waves must be very nearly symmetric with respect to the
surface and have equal and opposite components along the z
axis. Therefore, within the approximate formulation, the rate
of change of the spatial integral of the Poynting vector is neg-
ligible (and, rigorously, identically zero). Likewise, the average
energy of the field can be shown to be unchanging.

If j3is the angle of reflection corresponding to the angle of
incidence, 0 , then the absence of a tangential component of
force implies that «(r,0.7)sin B =ksin@. This, in turn, per-
mits the conclusion that {|K(r,0,f)|—2 fbK(r,@,f)} = |aex(r,0.7).
As a result of the foregoing simplifications, the expression for
the force becomes:

(F)= —'4(27‘)3_[&;—4‘3(&—)&—’ [[“aesine o
<Jyaexd 35| [lexmon, .

Let the incident wave vectors both form angle 0 with the z
axis, and let 3, and f3, be the inclination angles of the reflected
wave vectors in the regions z < g and z 2 q, respectively. Then,
considering only the 7 integrals for the moment:

ju’df {{ 2o (1,6, ?)‘}W: ]

- erf(cos 6+ ‘KI (r,6, f)|005 B, )

de(r0.7)) -

(55)

(oo pfess)

where & (r, 0,7 ) and x, (r, 0,7 ) are the wave vectors of the re-
flected waves. Next, as above, it is assumed that the variations
of the reflected wave amplitudes over several wavelengths are
very small. Then the formulae related to the uniform motion of
a mirror [20, 21] may be used:

1-2V cos 0+ 2V +(1+7?)cos 6
[ (r.0.7)| = ——— . cos =
1-V 1-2Vcos@+V
0.5 142V cosO+V? 2 +(1+7?)cos 6 (56)
N VS o e
Then making substitutions into (55), one concludes:
) dr|{ (r0.7)] - {li(r00))_ }
(57)

:r _2(cos@-V r _2(cos@+V
_judf(—"—)_v[ "(—_)

dt
1-7? 0 1-7?

Since the time variable has units of length, one can
convert to integration along the z-axis. For the regions
z<zcos f(7=0)+¢(7), and z > rcos 3, (r = 0)—g(r), only in-
cident waves exist which contribute nothing to the momentum
change. Adjusting the limits of integration accordingly, the in-
tegrals become:
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_[O dt {{ zex (1.6, f)|}:=q_; - { zex (r.0.7 )|} - }

¢ cos@-V(r+7
il qlr) df( - ( . )) (58)
=nlr) 1-V*(r+7)
B .r:”'df_-(cosg*:V(r”f)) (
glr) 1-V*(r-7)

where % and %, are given by:

d —2V+(1+V2)c059 d 2V+(1+V2)cosﬁ
- = max 0’—2 I 4 R e =
dr 1-2Vcos@+V dr 142V cos@+V
(59)

The result for the force becomes:

i he E 60)
Bye 42 1 aerie k’] (
()= Az [ k2 E)

ar) _(cosO-V(7+F)) ne . _(cos@+V(r-F))

% 4| " gyt :
- L sinddé J—;.mdr -V (r+7) J'M df

1-V3(r=7) J

If the velocity is constant, the force is zero. Let V' = V = const
then:

—2V+(1+V2)cos¢9 217+(1+I72)cos¢9
X1 = max 0,—2 T, o === = T
1-2Vcos@+V 142V cos@+V

(61 a,b)

and the integrals in the above force expression become:

a0 _(cosO-V(t+%)) cne _(cosO+V(r—7))
[ 1=V (r+7) e 1=V (r=7)

7\~ (1+7*)cos0 -2V 74 _ (1+7?%)cosO+2V
:(cos() V][V+( ) J_(COS()+V][_V+( ) ]

1-7? 1-2V cos@+V? 1-7* 1+2V cos @+ 7?2

1-7? 1-2V cos O +V* 1-7* 1+2F cos@+7?
(005497—17)2 (cos¢9+ 17)2
T 1-27 cos 0+ 7 142V cos 0+ V? (62)

In the integral of the first term, the sign of the cosine can be re-
versed. Therefore the integral of the first term is equal and op-
posite in sign to that of the second term and the force vanishes.

(cosg_yj[(l—Vz)(cosﬁ—V)](0059+V][(1—V2)(COSH+V)]

APPROXIMATION FOR HIGH-
AND LOW-SPEED SCANS

Since the epitaxial device is intended to both increase the am-
plitude, and the speed of the reflective surface motion it is well
to consider the case where V is a significant fraction of unity.
Let V=1 - v, and v << 1. Then the relations for the reflection
angles yield:

COS|,[7’1|=1+0(VZ), cos f3, =1+0(v2) (63 a,b)

(cosH—V)> cos 6 (cosa9+V)>c030.

Secondly, note that _ > Jand Sy
1-V? 1+V 1-1? 1-V




Using these inequalities and the above approximations for the
reflection angle cosines, one obtains an upper bound for the
spatial integral:

a0 ,_(cos@-V(r+F)) .nw,_(cos@+V(r-7))
L e ™ P

‘ (64)
< CDSG[ qr.la’:%—r d:%:|+0[1‘2]
= 1+V(r+F) a0 1-V(7+7)

Substituting this into the force expression, and performing the
integration over 0 yields:

|<@>/A|z‘<é)/,4+0(v2)‘
<E>/A‘:;%U:dkR(k)k3)Z

A 1 e . 1 s 1
(7) Z{J.f T1+V(z'+f) L(f) z-l—V(T—f)}

(65a,b,¢)

LA(r)

The expression in the bracket obviously vanishes when V is
constant. This lower bound is identical to the magnitude of the
one-dimensional approximation.

On the other hand, assuming V << I, an upper bound can
be discerned:

() (cosO-V(c+%)) ne _(cosO+V(z-7))
I—z.(z) (e ) _Lm 1-V?(c-7)
_(coso-V(z+7)) rm50d~(COS€+V(T
7 £

)

(@) _ -7
z-[.—rcosﬂdr 1-7? (T+f) L(r) 1-7? (r+f)
q(r) - 1 rcosd 1
<[ e 17 V(c+7) Ly 97 -V (r+7) (66)
The force expression then yields:
(£ 4= [(F.)/4]+ o) (67,b,0)

(7)< Z—M(jfdkk(k)ﬁjz

87’

LA(r)

1 1

A(r)= 7{Iqir)dfmj;r)df#7_f)}
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AVERAGE FORCE IN THE CASE OF PERIODIC SCANS

One could create a periodic disturbance by repeating the sur-
face displacement waveform. However, if the motion is imme-
diately repeated at the end of a cycle, there will be interaction
between the newly created waves and the reverberant wave still
crossing the segment z e [O, Z } Such interaction ceases if one
waits for time Z/c to begin the new cycle. The momentum in-
crement will then be the same for each cycle. The following
analysis adopts the one-dimensional approximation for the
Casimir force, (65). Fig. 5-a shows, schematically, the cyclic
surface position waveform so produced. By momentum con-
servation, the force on the mirror device is the negative de-
rivative of the momentum change, which is proportional to
A(z =T). This is illustrated in Fig. 5-b. Note the negative di-
rection of the force.

Using Equation (65), and setting the total duration of the
cycle equal to (7'+Z)/c one concludes:

((£.)/4), :;l?cz(_[:dkR(k)H )Tf_ZA(T) (68 2, b)

1{;z 1 T 1
A(T)ZE{J.TdTI+V(T+f)_‘[Zdrl—V(T_f)}

At this point it is well to examine the effect of various pa-
rameters on the force produced, and perhaps reformulate their
definitions. At the outset, it was assumed that the reflection co-
efficient was unity (perfect reflection) up to some wave number
cutoff beyond which it is zero (perfect transparency). A some-
what more realistic, albeit still crude, model is that:

R(k):{l,ke[kL,kU]

0, otherwise

(69)

where ky > k;. With this expression, the wave number integral
can be seen to be:

(I:dkR(k)k3 ):1?3A1€

k :B(ké +kj).%(kU +kL):|l/3
Ak =k, —k,

(70)

k represents the approximate middle (weighted heavily at

(b)

Fig. 5: (a) Cyclic waveform of the reflective surface position; (b) Force on the epitaxial device.
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Fig. 6: Force per unit area as a function of the maximum
waveform velocity, integer powers.

the upper end) of the useful band wherein reflectivity/transpar-
ency can be switched on and off, and Ak is the width of this
band.

Another parameter of interest is 5 = 2Z / (T +Z ) e[0.1). This is
the average speed, relative to ¢, that the activated laminae sweep
through the total period of the waveform. Finally, A(7) is di-
mensionless, depends only on the normalized velocity profile,
and is of order unity unless V is nearly unity. To summarize:

(F.)/4), = ” S BAEAA(T)

Z - T 1
:7{ T TI+V (r+7) IZdTl—V(r—f)}
F=[3(k +k2) (ks k)] 1)
Ak =k, —k,
B=2Z/(T+Z)e0,)

-
(=]
]

-y
o
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Fig. 7: Force per unit area as a function of the maximum
waveform velocity, fractional powers.

EXAMPLE: PERIODIC MOTION
WITH POWER LAW WAVEFORMS

Here some numerical examples are shown, involving the wave-
forms proportional to an integer power of time, treated earlier,
with ¥ denoting the maximum velocity of the reflective surface.
To appreciate the magnitude of the force per unit area, assign
plausible values to the various parameters. Suppose the plasma
frequency is in the range 10'* Hz to 10'® Hz. Specifically, let us
fix k, =2x10" (1= 0.3um) and set k, =4x10° (1 =1.5um).
Note that since 7' = NZ/V, it follows that 8 = 2V/(V + N). Hence
the average force depends only on the maximum speed and the
power law exponent.

Fig. 6 shows the variation of the force with maximum speed
for integers powers, N = 1 to 7. Similar results are shown in Fig.
7 for fractional powers between 1.1 and 2. It appears that for
any given maximum speed (below c), an approximately quad-
ratic velocity yields the maximum force per unit area.

CONCLUDING REMARKS

This paper re-examines the dynamic Casimir effect as a pos-
sible mechanism for propulsion. Previous investigations as-
sumed mechanical motion of a mirror to generate thrust. In
this case, because of the finite strength of materials and the
high frequencies necessary, the amplitudes of motion must be
restricted to the nanometer range. Here, an epitaxial stack of
transparent semiconductor laminae is proposed, where voltage
is rapidly switched to successive laminae, thereby creating con-
tinuous motion of a front of charge carrier density. The result
is the creation of a reflective surface in rapid, large amplitude
motion without the use of mechanical contrivances. Since pre-
vious analysis of the propulsive effect was restricted to motions
much smaller than the wavelengths of importance, it was nec-
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essary to derive correct relativistic expressions appropriate for
large amplitude motion. This was accomplished for the general
motion case and examined in detail for a variety of possible
motions. All calculations assumed an initial zero temperature
state. Another restriction is that detailed dielectric function
models were not used; rather the reflectivity was based on a
simple wave number cut-off model. Moreover, as for previous
workers, the treatment is semi-quantum in that the epitaxial
stack is modeled as a set of prescribed boundary conditions
on the field operators. Despite these restrictions, if reasonable
charge carrier volumetric densities are assumed, the propulsive
forces may be quite significant. The assumption of finite tem-
perature and surface velocities that are a significant fraction
of the light speed may possibly increase the magnitude of the
present estimates.



APPENDIX A

The finite response time of a semiconductor lamina allows us
to create a continuously moving “front” at which the cumula-
tive areal density of charge carriers suffices to produce a desired
level of reflectance. Thus, although the laminae are discrete,
their sequential stimulus at the proper rate yields the effect of a
continuously moving mirror.

As an illustration, suppose that the conductivity, / (t), in re-
sponse to a voltage pulse has a simple linear rise and fall, as in:

zp <7y
h(t):pmax 2_t/TR,2TR 2127,
0,t> 27,

(A-1)

where 7, is the finite rise time and A(r) is the impulse re-
sponse of the lamina conductivity. Suppose each successive
lamina is stimulated at a sub-multiple of the rise time after its
immediate predecessor, such that each rise in the reflectance is
a small fraction of of complete reflectivity. Fig. A-1 illustrates
the resulting motion of the conductivity profile. An incom-
ing plane wave suffers a cumulative reflection in proportion
to the total charge carrier population per unit area along its
path. In the example of the figure, the total areal population

An Epitaxial Device for Dynamic Interaction with the Vacuum State

corresponding to some reflection coefficient, |R(k)|, is suggest-
ed by the gray-shaded areas. In general, the position of the
“front” along which the total reflectance reaches some value
is seen to move continuously in the direction of, and with the
approximate speed of, the conductivity profile (illustrated by
the blue-shaded boundary in the Figure). Even if the charge
carrier profile has the staircase form as shown in the Figure,
the Courant-Friedrichs-Lewy condition can be satisfied so
that the effective conductivity profile approximates a con-
tinuously increasing distribution. This permits the device to
approximate the reflective properties of a mechanical mirror,
including the relativistic Doppler effects. Moreover, remaining
discretization effects can be mitigated by designing a suitable
charge carrier gradient for each lamina. Because of length lim-
itations, detailed proofs of the foregoing results must be de-
ferred to a later manuscript.

To assess the achievable front speeds, consider the example
of Fig. A-1 where the time between inputs to successive lam-
inas is a third of the rise time. Then the average speed of the
reflective surface is ~38/7, where & is the lamina thickness.
Taking a typical rise time of 10° s and a lamina thickness of a
millimeter, obtains a reflective surface speed of ~3x107 m/s,
i.e., = 0.1. This could be significantly improved by advanced
high-speed switching technology.
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Fig. A-1: Temporal progression of conductivity as the laminas are successively pulsed. The blue-shaded boundary indicates the
continuous motion of the front having a particular value of reflectance.
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APPENDIX B
ES I o ..
;lLOIm i (2,7) - i (2,7) |d =
: as, (-z- |
J~q( ) iz Im{[exp(ik(z -7))—exp(ikS, (-z - T)):||:—ik exp(—ik(z—1))+ik % exp(—ikS, (-z - r))}J
- -
. oS (z—
+L(r)dz hn{[exp(ik (-z— r)) - exp(ikS_ (z— T))] [ik exp(—ik (-z— T)) +ik %exp(—ilﬁ_ (z- T)):|}
= j'q(r)dzlm —ik +ik 3, (-z-7) exp(ik(z -7-S (7271)))+ ikexp(fik(z -7-8 (7271))) 7ikm
- 0z N ’ oz
+_[r dzIm{ik +ikmexp(z’k(—z -7-8 (z- T)))—ikexp(—ik(—z -7-8 (z- T)))—ikM (B-1)
a(*) Oz B B 0z
oS, (—z— S (-z—
= kJ. dz{—l + %cos(k(z -7-8,(-z- r))) +cos (k(z -7-8,(-z- r))) - %}
as_( oS (z—-r1
+k dz{l —_ cos(k(z +7+8 (z—7)))-cos(k(z+7+S (z- r)))—%}
Z
aS, (-z-1)
= dz 1- cos z -8, (-z-71 —_— -1
[ (o)) B2
—kj dz[l cos k(z+7-S (z—r)))} M—l
- 0z
Let: ¥, =—2-7, ¥ =z-7 (B-2)
Then we have:
ZI Im|: z r)— (z,r):|dz
= kj.q(r)dz[l—cos(k(z -7-8 (—z —r)))jl M—l
- - o(-z)
* as_(z-71) _
—kJ.q(r)dz[l—cos(k(z+r—S, (Z_T))):I{T_l} (B 3)
—q(r)r oS, ( ;(+)
=—kJ.0 dy. I:l—cos(k(;{+—21'—S+ ()(+))):||:T—l
0 A ( ya )
+k".q(r)7rd;(7 [l—cos(k(;L +2r-S_ (;(7 )))jl{ -1
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