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Abstract: Recent advances in the reduction of the integration time required of Intensity
Correlation Imaging (ICI) have opened the possibility of significant improvements in
astronomical imaging. This paper discusses the application of ICI to the fine resolution
imaging of geostationary satellites conducted by ground-based observatories.
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1.Introduction

Reviewers who have read the latest papers on the new Intensity Correlation Imaging process
have made the excellent suggestion that the author demonstrate how effective this algorithm
can be utilized in real applications. Now that the mathematics of the ICI algorithm and its
enormous reduction of integration time is reasonably well explored, this paper reviews its
practical applications in astronomy, specifically the high resolution imaging of commercial
geostationary satellites. This could open the door to the construction of advanced ICI
observatories that are within the financial resources of colleges and universities around our
country, yet able to compete with very large telescopes such as the 30-meter telescope.

To arrive at a preliminary design for a ICI observatory, Section 2 briefly reviews the sequence
of five papers that have completed the present ICI algorithm and its formulation of the
integration time. Next, Sections 3 and 4 discuss two additional factors that have been known to
reduce integration times still further. These are the use of redundant baselines and
multispectral avalanche photodetectors. Finally, Section 5 determines the rapid integration
times for high resolution imaging of geostationary satellites. Surprisingly, and due to the
partial coherence effect, the architecture of the ICI observatory strongly resembles an imager
design found in nature.

2. The evolution of ICI toward its present state

The first experiments on imaging techniques based upon the correlation of intensity
fluctuations measured at two or more spatial-temporal points for thermal sources of light were
carried out by Hanbury Brown and Twiss (HBT) [1-4]. At the outset a number of advantages
were discerned: non diffraction limited, inexpensive hardware, immunity to phase and
intensity scintillations, and electronically coupled apertures capable of unlimited resolution.
However the very long integration times posed the main obstacle for some seventy years.

Besides the thermal source of illumination, HBT rests on the following assumptions
concerning the measurements of the cross correlations of intensity fluctuations :

(1) The square of the normalized coherence magnitude values are typically of order
10~ for those regions in the u-v plane corresponding to reasonably detailed features in
the image domain. Hence, the SNR has only a linear term in this factor.



(2) The bandwidth of the photodetector is much less than the optical bandwidth. As a
consequence only spectral radiance contributes to the SNR. Furthermore, the one-
time probability density of the intensity fluctuations is Gaussian.

(3) The condition of greatest interest to us is the observation of dim objects ranging from
10 to 14 apparent magnitudes. The result is that the SNR has only a linear term in the
number density per mode.

(4) Dark count should be negligeable. This means that photodetectors need temperature
control. (The author favors built-in coolers).

(5) Photodetectors must have no DC component. The object is to measure intensity
fluctuations. (The author favors APDs run in Geiger mode)

(6) If individual apertures are larger than the size able to resolve the target, the coherence
magnitude washes out. The partial coherence effect, denoted P(A), is explained in
Section 5 and must be close to unity.

Under these conditions, and following Brown and Twiss [1-4], the intensity fluctuation cross-
correlation for a pair of apertures is:

Intensity fluctuation cross correlation for u-v vector u
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where:

J = Number density per mode = AI/Av,

A = Aperture area

I = Number of photon arrivals per square meter, per second

‘ y‘ = Normalized coherence magnitude =10

Av, = Optical bandwidth

Av, = Detector bandwidth

k = Magnitude of detector response over 1/Av,

11 = Photon detection efficiency

N, (0,1) = Gaussian random variable with zero mean and
unit standard deviation. N, (0,1) and N, (0,1)are
statistically independent if u=u'. (1. a-)

P(A) = Partial coherence effect

AT = Integration time. The same for all aperture pairs.

At this point we observe that the coefficient of the noise term can be determined at the outset
by calibrating the detectors, using the aperture parameters, and measuring the intensity
observed by the individual aperture sensors. In other words, the quantity

[,8;7 ﬁ Av, / Av, ] / IATAvV g can be obtained before any intensity fluctuation cross
correlation measurements are attempted. Hence, it is convenient to divide the intensity cross-

correlation by this factor, thereby normalizing the noise component to unity standard deviation.
Therefore we can write:

Intensity fluctuation cross correlation 5
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So may be recognized as the zero baseline SNR for a unit integration time, which can be

determined at the outset via measurements from the individual apertures and equipment
calibrations. S(u) can be interpreted as the “empirical SNR” that one can use to compare the

signal component of the measurement to the noise component, whose standard deviation is

always one. Hence, as the integration time increases, one can compare S IAT | 7(u)|2 to unity
to ascertain if the desired SNR is reached with 50% probability. Thus we can define AT as:

2

_SNR, 3)

SNR, 0 E[S(u)]=S,VAT |y (u)] = AT = .
Syl (u)

The expression for AT constitutes the “conventional” estimate of the integration time
formulated by Brown and Twiss.

The effort to reduce integration times lasted over a quarter of a century and success was
achieved quite recently via a sequence of five journal papers [6-10]. The history of this labor
has been disclosed by the invited speech, [11], at the 4" International Conference on Optics,
Photonics and Lasers at Hiroshima, Japan on December 7, 2023. The following briefly
describes the evolution of an algorithm that enormously reduces integration time, rendering
ICI a practical, and inexpensive astronomical imaging technique.

The first challenge was to discover a phase retrieval algorithm capable of converging in the
presence of large amounts of noise (low values of SNR), ). The starting point of this effort was
Fienup’s Hybrid Input-Output (HIO) algorithm [5]. In the presence of low noise HIO displays
superior convergence behavior in contrast to other methods. If SNR, is below unity, however,

HIO can often fail to converge. In references [6,7] the present author added two crucial lines
of code to HIO: (1) a strict restriction of real valued, non-negativity on the current image every
iteration and (2) a relaxation technique that gradually satisfies both Fourier and image domain

constraints. If we denote by é(k) the current value of the coherence magnitude, then the

relaxation technique is:
G(k+1)=(1-2)G (k) +2[3g(k)| @)

Where |Sg( k)| is the magnitude of the Fourier transform of the earlier image iterate, g( k)

and the relaxation parameter, ¢is of order 10~ to 10°. The resulting algorithm is called the
Noise Reduction Phase Retrieval (NRPR) algorithm.

The analysis of Reference [7] shows that the alteration of the original coherence magnitude
data using the previous iterate reduces the noise. Examples shown in [6] display full
convergence to the noise-free image for SNR, as low as 107 . Moreover, [7] establishes that

full convergence is attained provided that zero amplitude pixels are known a priori.

As a next step, we note that Brown and Twiss wished to determine stellar diameters on the
basis of an assumption of radial symmetry which requires only the coherence magnitudes for
each flux collector pair. However, for two-dimensional imaging the Van Cittert-Zernike
theorem requires phase information, which in turn demands low noise phase retrieval



algorithms as provided by [6,7]. Assuming that black pixels are known a priori, the Fisher
information needed for the Cramer-Rao bound demands the use of conditional probabilities
reflecting the necessary constraints. Such probabilistic constraints necessarily reduce noise.in
the final result. This is demonstrated in Reference [8]. Using the Hirschman entropic
uncertainty principle [12-14] and Lyapunov’s form of the central limit theorem [15], the
following asymptotic relation (for large numbers of black pixels) is obtained:

N.SNR =42 (5)

Where we set SNR, to unity and N is the number of black pixels in the field of view. We
note that even for modest sized images, N.is quite large and dominates the total pixel count.

Therefore, the asymptotic result for the integration time established for NRPR is:
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Figure 1 shows the ratio of (AT) . to the conventional calculation of Brown and Twiss,

NR.
( AT )Conventional :

Fig. 1. The ratio of NRPR integration time estimates to the conventional estimate of Brown and Twiss.

The previous expressions presuppose that the configuration of the zero intensity pixels are
known. But our final goal is to use ICI to construct images with reasonable integration times
using no a priori data except that (1) we are looking at bright objects against a black sky, and
(2) we have a crude estimate of the angular size of the objects (+3 dB). Thus we must find a
way to discover the identity of the black pixels from the limited data (items 1 and 2).

Reference [9] explores a stochastic search algorithm. Using the same initial coherence
magnitude data, run a series of NRPR calculations, where the initial guesses for the image are



statistically independent, uniformly distributed in an interval [0,5), where & is a real,
nonnegative constant. This produces an ensemble encompassing all possible multi-pixel
images. One might reason that such an hypothesis test would demand innumerable trials.
Surprisingly, there is a high probability that the number of trials needed to discover the black
pixels (and converge to the noise-free image) are very few.

The key element in the stochastic search algorithm is the concept of the “Box”. This is a
square region of size Bx that is centered in the field of view where all pixels within the box are
unconstrained and all pixels outside the box are constrained to be zero. The basic idea is to set
up a series of NRPR runs that start with large box sizes and progress to smaller and smaller
boxes — until the noise-free image is identified.

Figure 2 shows the process. One first collects the coherence magnitude data for all apertures.
This data remains the same for all random trials. The algorithm sets a box size, then runs
NRPR (using a new random initial guess every trial). If, during a sequence of trials there are
no two fully correlated images, the algorithm tries a new, smaller box and runs again. On the
other hand, if during a sequence of trials there are two identical images (allowing for the trivial
ambiguities of 180 degree rotation or object translation in the field of view), then NRPR has
selected the noise-free image. Every computation made to date using this algorithm has
produced the same result. As in thousands of similar tests, there are two categories of images:
A set of random, nonrepeatable images and a set of images that, aside from translations and
180-degree rotations, perfectly match one another (and match the true, noise-free image as is
proved in Ref. 10).

To illustrate computational results for the stochastic search algorithm, Figure 3 shows a typical
sequence of random trials (for a simple satellite image) terminating in the perfect noise-free
image. Figure 4 displays the statistics of the probability that for a given box size the algorithm
will identify the correct image after R trials. The probabilities are quite large. The Right side of
the Figure shows that if the box size is too small to capture the true image, the resulting
converged image produces illumination outside the box as a consequence of a conflict between
the Fourier domain and image domain constraints.

Figure 2: Diagram of the stochastic search algorithm.



Figure 3: Typical sequence of convergent images (for the box size of 44), terminating when two of the images are
perfectly correlated.

Figure 4: Left-hand side: Monte Carlo statistics of the probability of a noise-free image identification vis the stochastic
search algorithm. Right-hand side: The algorithm indicates when the box-size is too small to contain the illuminated
object.



Finally, Reference 10 presented a sequence of asymptotic approximations revealing the
underlying mechanisms of ICI and its attendant NRPR algorithm and the stochastic search
algorithm as published in [9]. The intent is to better understand the ICI approach with a view to
improve and refine the algorithms. The outcome is that [10] provides proof of the results of [9].
The developments in section 6 of [10] reveal why the stochastic search process can achieve
convergence to the noise-free image with high probability and few computational trials. As a
result of the statistical analysis of Section 6 of [10], it turns out that the reverse of the
stochastic algorithm, i.e. starting with small boxes and then increasing their size as opposed to
vice-versa actually speeds up the convergence of the method to a handful of trials. These
results are illustrated in Figure 5.

Figure 5: (a) GOES 16 type geophysical satellite at geostationary orbit with 20 cm resolution, (b) Closed-form
statistics of the stochastic search algorithm, (c) A sequence of images of the test image proceeding from left to right
and top to down. The top row progresses from B =20to B, =28 illustrating the contradictions inherent when the

box size is smaller than the illuminated object. Once the box size can contain the object the lower row shows five
correct images, all using B =30

3. Preliminary observatory design and the use of redundant baselines

Having reviewed the up-to-date ICI theory, this paper addresses the characteristics of an
observatory suited to the high resolution imaging of commercial geostationary satellites. For
simplicity, it is assumed that the tilt of the u-v plane from zenith is modest, so that the
positioning of the observatory apertures is approximately on the horizontal ground plane. The
geometry of the observatory is defined by the location vectors, termed here as the baseline
vectors, linking all the pairs of aperture locations in the horizontal plane. Each baseline vector
is associated with the time averaged, intensity fluctuation cross-correlation (i.e. the coherence



magnitude data) collected by the aperture pairs. In the recent theoretical developments [6-10],
each baseline vector was assumed unique, so that there were only a single coherence
magnitude measurement per baseline vector. In this application it is time to exploit a
previously existing and fairly obvious technique to further reduce integration time. The
uniform tessellation of the aperture positions can be very useful because it allows redundant
baseline vectors and their repeated and statistically independent coherence magnitude data to
reduce noise.

To estimate the further reduction of integration time, it is assumed that the aperture positions
occupy a square grid. This implies a square grid for both the u-v plane and the positioning of
the pixels in the desired image field-of-view. In the latter case, the size of the image is denoted
by N pixels on a side, where N is an odd integer. The following discussion demonstrates
how a square grid of aperture positions that are N +1 on a side can produce a significant
reduction of integration time by means of redundant baseline vectors.

To begin, we use Figure 6 to explain the process, where N =11 . The figure shows
(N + 1)2 =12% apertures in a square array. We take Y of this array, shown by the red outlines,
and compute the intensity fluctuation cross-correlations for all the baseline vectors in the
(N+1)/2 by (N +1)/2 region. Then we reposition this array within the (N+1) by (N +1)

array without repeating any position and without repeating a cross-correlation for a 180-degree
rotation of a baseline vector. As is described below in Appendix A, which explains the
computational aspects of the design, all of these calculations are readily parallelizable and
therefore can be produced within the same integration time. Given this cross-correlation data,
we can construct an (N +1)/2 by (N +1)/2 array, where for each of the fundamental baselines

there is assigned the sample averages of the redundant coherence magnitude measurements.

Figure 6: The geometry of the aperture locations in the horizontal plane. R(x / 1) is the redundancy of the u-v plane

baseline vector



The fundamental baseline vectors are shown at the top of Figure 7. Lower in the Figure the
left-directed and right-directed vectors are sorted out preparatory to the construction of the u-v
plane array. Notice that the left-directed vectors have no vectors on the lowest horizontal layer,
and the right-directed vectors on the left-most vertical layer. The reason for this is that the
intensity fluctuation cross-correlation is the same as that associated with its 180 degree rotation.
This means that the pair of grids at the bottom of Figure 7 must be overlapped, joining the
right-most vertical column of the left-hand array to the left-most vertical column of the right-
hand array.

Figure 7: The fundamental baseline vectors (top), sorted into left-directed and right-directed vectors (bottom). These
will be amalgamated into a central vertical column.

Figure 8: Construction of the u-v plane



Figure 9: Redundancy matrix for the N = 11 example.

The next step is the construction of the u-v plane as illustrated by Figure 8. The baseline
vectors in that plane take the form of the basic measurements in the object plane divided by A4,
the mid-band wavelength of the photodetection devices. The right side of the previous diagram
is amalgamated as described previously; the right-hand array is then rotated 180 degrees
counterclockwise. Then the left-hand array in the previous diagram is rotated 180 degrees
clockwise and amalgamated along the horizontal seams. The result is a u-v plane array that has
its origin at the center of the array and forms an N x N Fourier-domain matrix (the same
dimensions as the image-domain matrix). Each baseline vector and its 180 degree rotation has
the same sample averages of the redundant coherence magnitude measurements.

The resulting redundancy matrix for our N =11 example is shown in Figure 9. In general,

for each u-v vector, u ,the redundancy, denoted by R (u) is determined as follows:

0 0 0
Uel™:U=[1..,]] MO|0 U'U 0
0 0 0 (7)
ol 0
R(u)=|1, {MO{F”DF[M]\ }}} I,
0 0
We note that:
(L(N+1)+1) <R(u)< (N +1)’ ®)

Furthermore, the sample averages of the redundant coherence magnitude measurements. Have
the form:

Intensity fluctuation cross correlation for u-v vector u
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where the N, (O,l) for all s and u are statistically independent. Since we assume that all

apertures and their characteristics are the same as well as the integration time, we can divide

10



all terms by [ Ezczq Av,/Av, J / JATAv, to obtain the expression for the sample averages of

the redundant coherence magnitude measurements of the empirical SNR to obtain:

R(u)
u) == Sy /AT (u) |y (u) +— N, L(o,1) (10. a-b)
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The quantity Z N,, is of course a zero mean, Gaussian random variable with

R u =1
standard deviation:
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Hence, we obtain:

(12.a,b)
S, =nB\JAv,P(4)

However, the empirical SNR should be measured in comparison with a unit standard deviation.

Then as before, we define:
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We now see that this version of AT is the same as {AT} except for the factor of

conventional

1/R(u). Then using the ratio {AT }NRPR / {AT} we obtain:

conventional

AT = 1 4 (14)
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For a quick upper bound estimate of the integration time, we can use R(u)> (%(N +1)+ 1)2 .

The upper bound for R(u) is only four times larger than this lower bound. Furthermore the

upper bound is quickly erased by the operation of NRPR because the upper bound is associated
with the small baseline vectors which have the largest SNR, whereas the lower bound persists.

Thus a truly precise estimate of AT, taking account of the operation of NRPR, is given by:
2
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Next, we consider the image field-of-view and stipulate some approximate requirements as
illustrated in Figure 10. The x-y plane exists close to the geostationary object. Ax is the

desired resolution length. We are looking at an illuminated (via reflected sunlight) object
against a black sky. To achieve sufficient image detail, it is best to obtain a rough estimate of

min

11



Figure 10: Configuration of the image plane (the inverse Fourier transform of the u-v plane).

the object size. Also to provide sufficient black pixel constraints one should make the size of
the whole image field-of-view approximately three times the size of the object. Given the
resolution size, the size, L, of the entire array on the ground and the diameter of each aperture,
L, and d, should be:
AH L
~__ d =

- b

Ax TN+

(16)

where H is the geostationary altitude.

Next, we compute [, the number density per mode assuming diffuse reflection and using the
black-body approximation and the apparent magnitudes of the satellites. Appendix B gives us:

2 1 F sat 3

Vyr =(1.0345x10")T, T =5772K  y hv/kT (17. a-g)

F(my,)=F x10"2%md g —1350 W /m?

where Q(me) is the photon arrival rate, v, is the frequency of the solar spectrum

maximum, F(m,,)is the flux from a satellite of apparent magnitude m, and {(4) is the

Rieman zeta function evaluated at 4.
4. Analysis and benefits of multispectral photodetector operation

An additional way that results in decreased integration time is due to the stipulation (2) in the
Introduction, that the bandwidth of the photodetectors must be much smaller than the optical
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bandwidth. This is known as the slow detector assumption. The technique is to equipe each
detector with multiple non-overlapping frequency channels (so that all channels are

statistically independent) denoted here by M . One then averages the detector output channels
as depicted in Figure 11 . The theory established by Brown and Twiss is that if each channel is
at least an order of magnitude larger than the detector bandwidth, the SNR for M channels is

increased in proportion to /M, , thereby, in effect, increasing the detector bandwidth
by \/M, and decreasing integration time by A/_. To put it another way, under the slow detector

condition, the SNR depends on the spectral radiance, not the total flux. This has been
established by theory [1, Remarks following Equation (3.62)] and [2, Equation (2.13)] and
experiment [3,4]. The expression for the integration time is amended to:

2

AT = ! 4 (18)
- 2 2
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min

The state of the art in multi-spectral detectors admits of reasonably priced and modest numbers
of frequency channels. As illustrated in the figure below, if Av, =1 GHz and each spectral

channel is 10 GHz one can sustain 600 channels.

Spectrum of
object

/_X’ Spectrum
M. (600)

frequency
R > channels
i Vv J
’ Color filter ‘ v

a e
Spectrum

1GHz = detector BW

—> <+— 600 THz >> Avq
> Compute correlations for
1 A% all channels and average

_ graph Because Av D Av, for each channel,

the standard SNR equation remains valid:

I SNR s = 41 (% )T AV,

(depends only on spectral radiance,

not total flux)

Figure 11: illustrates the initial considerations in defining a multispectral correlator design. First one establishes the
desired image resolution of the observed object. This drives the spectral resolution requirement which is implemented
by a narrow band filter. inserted into the telescope optics and determines the optical bandwidth, Ay . We assume that

IE and the coherence are approximately constant over the optical bandwidth so that they are characteristic of the light

in the entire band.

With further analysis, going beyond [1-4], the ratio of the frequency channels to the
detector bandwidth need not be much larger than unity [16]. Thus M = 6x10° can be

13



attainable but requires further development and price reduction. In the next section, we will
compare both 600 channels and 6x10°.

5. Preliminary design of a high resolution ICI observatory

The first consideration is the range of the apparent magnitudes. Many of the smaller scale
satellites range from magnitude 10 to 14. These are also typical of GOES 16 sized bodies.

Therefore we select a satellite that is 6 by 6 meters, exhibiting m_, in the range 10 to 14. We
wish to achieve a fairly challenging degree of image resolution. Accordingly we choose
Ax =10 cm . Taking account of the image field-of-view stipulations in Fig 10, namely
N =(3/Ax(m))x 6m = 2000 . This leads to:

L=179m d=LJ/(N+1)=9cm (19.a,b)
Additional parameters needed for the integration time computation are as follows:

t

H =35,786km, n=0.5, Av, =1GHz,

7|, =107, No=4N? (20. a-¢)

A curious feature is the small aperture diameter and its effect on the partial coherence factor,
P(A). The following figure shows this factor as a function of the aperture width divided by

the array width that would be able to resolve the illuminated object. Taking account of the fact
that the object size is approximately one third of the array size, i.c. d/ (%L):O.B, it is

obvious that P (A) is very close to unity. Now proceeding with P(4)=1 we compute the

integration times and excess processing times using the formulae developed in the previous
sections, namely Equations (14,15,16,17 and 18) and in the appendices A and B.

Table 1 displays the results for AT and AT

excess

(as defined in Appendix A) In part (a),
M, =600. Since AT, =4.012x10" the excess processing time has negligible effect on

excess

the total imaging time. At, m_, =11.5 , AT is nearly an hour, but at m =14 ,
AT =85 Hrs is still not prohibitive. In part (b), M_ =6x10°. In this case AT, =0.0401

excess

outweighs the lowest AT but becomes negligible above m_, =12.5 . For all of the apparent

sat —

magnitudes considered, AT + AT, _  is never more than =5 minutes. These results show an

excess

enormous reduction of imaging time as compared to the conventional Brown-Twiss SNR
formulation. Indeed, the ratio {AT}  /{AT} in the case M, =6x10" is

conventional

approximately 4.2x107" .

There is also a striking difference between the aperture design of Brown and Twiss and the
present design. Figure 13 shows the Narrabri observatory with its more than six meter
apertures, and the long baseline distances between them, whereas Figure 14 (which is termed
the “compact array”) envisions closely packed 9cm apertures. The earlier design was properly
motivated by the goal of measuring stellar diameters, while the present design is absolutely
driven by very high resolution imaging of resident space objects. The apertures in Figure 14

14



Figure 12: Calculation of the partial coherence factor in Ref [2] by means of the Manchester University Electronic
Computing Machine. Square apertures are assumed. For the present observatory design the ratio of aperture size to the
satellite size is very small, resulting in a near unit coherence factor.

(a) M =600,AT,,,, =4.012x107

excess

AT AT, (minutes)

E

10.0 0.0032 0.0433
| 105 | 0.0082 0.0483
0.0205 0.0606
| 115 | 0.0514 0.0915
| 120 | 0.1292 0.1693
| 125 | 0.3245 0.3646
| 130 0.8151 0.8452
2.0475 2.0876
| 140 | 5.1431 5.1831

M,=6x10°,AT,... =0.0401

excess

(b

Table 1: (a) M, =600. Since AT, =4.012x107 the excess processing time has negligible effect on the total

excess

~—

imaging time. (b) M, =6x 10°. In this case AT, =0.0401 outweighs the lowest AT’ but becomes negligible

excess

above m_, =12.5.
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Figure 13: Illustration of the Narrabri Observatory flux collectors; their size and spacing.

(b)
Figure 14: The compact array, showing closely spaced, highly redundant and very small flux collectors.

could be entirely enclosed units each consisting of a refractive lens with a Cholesteric Liquid
Crystal (CLC) tunable aperture mirror controlling line of sight, feeding into a compound
elliptical concentrator which deposits photons on a multispectral avalanche photodiode. Each
aperture sends its intensity fluctuation signals into a processing mat which computes all the
redundant coherence magnitude data.

The compact array design described above is one of a number of imaging devices that
resemble imagers that occur in nature, namely the insect eye as shown in Figure 15. The insect
eye has a wide field of view, but because it, like ICI, measures only intensity fluctuations, the
partial coherence effect forces it to consist of a sheaf of tiny intensity sensors, called
ommatidia. The individual ommatidia are not diffraction limited image forming devices. Each
ommatidium has a lens that focuses light on a light guide (i.e. a transparent tube or
rhabdom) which diffuses the light into closely packed photoreceptor cells (the R-cells).
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Figure 15: Diagrams of the common insect eye. The flux collectors (ommatidia) must be too small to resolve the target,
else the eye cannot work.

The rhabdom/R-cells geometry permits multispectral operation. The insect eye is a highly
emergent, sophisticated intensity sensing device capable of very high resolution. Our
suggested design for an ICI observatory in Figure 14 will be one of a number of design
refinements based upon the study of insect eyes and the development of artificial ommatidia.

The study of nature for the advance of astronomy will also result in a vast reduction in the cost
of high resolution imaging of geostationary satellites based on the ground. If we consider a
~180 meter primary mirror ( to attain 10 cm resolution), seeing conditions would demand that
the primary would be segmented (each segment being ~ 1 meter or less) and all segments
controlled by active optics to reduce phase scintillations below roughly /30 in the visible

range. The extreme restrictions on sensitivity also pertain to large-scale conventional
interferometers. No conventional visible range multipixel imager has been developed or
proposed with 4 Mega pixel imaging, and 10 cm resolution per pixel out to 36,000 km, with a
cost below $ 140 million USD. In contrast, the specifications for optical alignments and
surface precision for the present ICI concept are in the centimeters range not the nanometer
range. In addition, the ICI aperture is fully enclosed, and temperature controlled. These
features mean that the ICI apertures can be mass produced. Furthermore, although we
mentioned a super-computer as a vehicle for parallelizing the redundant coherence magnitude
computations, only addition operations are needed. Thus a reasonably simple adding machine
will suffice to perform imaging within minutes or hours of integration time.

6. Concluding remarks and further efforts

This paper considered the design of an ICI observatory capable of imaging commercial
geostationary satellites with a resolution of 10 centimeters and a field-of-view of four mega-
pixels. The effects of redundant baseline measurements and multispectral photodetectors were
included. The integration times were computed for apparent magnitudes spanning the range 10
to 14. For modest numbers of multispectral frequency channels, integration times spanned
minutes to hours, and for more advanced multispectral sensors, the integration times were no
longer than five minutes. The partial coherence effect tightly constrained the observatory
design to be one in which small, independent apertures are closely spaced in a large square
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array (~180 meters on a side). This architecture strongly resembles that of the insect eye,
which leads to both enormous imaging capability as well as inexpensive hardware. Further
efforts will harness our study of nature to advance computational imaging via ICI considerably
beyond conventional astronomical technology.

Appendix A

Here we consider the details of the algorithms needed to calculate the necessary intensity
fluctuation cross-correlations and their insertion into the fundamental baselines needed to
populate the u-v plane. Up to one thousand image pixels on a side (i.e. a megapixel image) are
deemed sufficient to provide sufficient image resolution for many geostationary satellites. We
begin with a number of definitions:

C

(S} () (mé't) [ The product of intensity flutuations for the baseline vector

({k. j} = {1,m}) within the aperture frame of rereference
{k, j} : k =horizontal index of the aperture position relative to the below-left
corner of the aperture array, marking the base of the baseline vector

nn

j =vertical index " " marking the base of the vaseline vector ...
{l R m}: are similarly defined and mark the tip of the baseline vector. These

coordinate indices are shown in Figure 6.

ot=1/f, f 1O Sample frequency employed to calculate the time averaged
intensity cross-correlations = Av,

i.e. the coherence magnitude data averaged over AT

R AT/St
C({k,j} - {l,m}) = Z C({k_j}%{[vm}) (m§t) [J coherence magnitude data averaged
m=1
over AT for baseline vector coordinates Al
(k. j} = {L.m} (k. ]) as defined in Figure Al 1" &)

The quantities C ({k, J } - {Z ,m}) are running averages that stop at the calculated integration

time, AT . The intermediate values, C({k ool })(m5t), are not saved. These coherence

I,m
magnitude data are to be calculated by means of separate analogue or digital computers that

are resident in each ICI aperture. Because of the limit on N <2x10° each aperture processor
needs to compute less than two thousand coherence magnitude values. This suffices to

compute all the necessary C ({k, j} - {l,m}) values simultaneously within the predicted

integration time AT so that there is no excess computation time beyond AT .

Furthermore, the operation of NRPR quickly reduces the noise components of the small
baseline vectors. Because of this, not all resident aperture computers need participate in

computing the é({k,]} - {l,m}) . In fact, only the smallest number, (%(N+1)+1)2 , of
é({k,j} — {l,m}) must be computed. Let us define:
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K (Ax, Ay) =The sum of all é’({k,j} - {l, m}) that pertain to (A2)

the baseline vector, (Ax,Ay) in the image plane

Our analysis starts with the computation of the K( Ax,Ay) pertaining to the rightward pointing

baselines in Figure 7. We note that because only coherence magnitudes are computed, not
coherence phases, the baseline vectors are distinguished only by their lengths, and therefore
the leftward pointing baselines are endowed with the same K (Ax, Ay) values. Likewise the

same is the case for the lower pointing baselines shown in Figure 8. Hence, we need consider
only the rightward pointing baselines in Figure 7.
Figure A-2, illustrates how the K (Ax,Ay)are composed of the é({k, it m}) by summing

the redundant coherence magnitude data pertaining to the (4,6) baseline In the in the image
domain coordinates while using only (%( N+1)+1)2 (= 49)0f them. The resulting K(Ax,Ay) is:

K (Ax=4,Ay=6)=C({0,0} > {4,5})+ C({1.0} > {5,5})+...+ C({8,0} > {11,5})

+C({1,0} - {5.,5}) +C({2,0} > {6,5})+...+ C({8,0} > {11,5}) A3

+C({0.4} > {3',9})+ C({14} > {4.9})+..+ C({8.4} > {11,9})

+C({0,5) - {3',10})+ C({1,5} —>{4.10})
+C({2,5) > {5.10}) +C({3.5} —>{6.10})

Note that all other baseline vectors in the u-v plane will have the same number of terms and
that for all redundant vectors in the u-v plane, all the ¢ ({k, Jj}— {l,m}) terms will be different.

Thus for each pixel in the u-v plane there will be (%( N+1)+1)2 terms, each one containing

distinct coherence magnitude values. For an N’ image , (%( N +1)+1)2 N? coherence

magnitudes must be summed, requiring the same number of Flops (Floating Point Operations).

However, with existing super computers capable of 10" Flops per second the excess time
needed for this processing is

AT, =(L(N+1)+1) N? /10" (A4)
For multispectral detectors, with M frequency channels T..... becomes:
AT, =(L(N+1)+1) N°M, /10" (A5)
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Figure A-1:

These numbers constitute the excess processing time needed to secure all the redundant
baseline data beyond the predicted integration time. Thus both the integration time and the
excess processing time will be displayed in the body of this paper.

Appendix B

This section derives S, characterizing the satellites by their apparent magnitude due to their
diffuse reflection of solar radiation and its black body approximation. We begin with the black
body law, Z(V) , as a function of frequency v . This is proportional to:
s)e—t gt (Bl.a,b)
exp( ;() -1 kT
If the total flux, [, of the satellite is known, the spectral radiance is given by:

B,(v)=Mx(v = F/ [ Zexp (B2.a,b)

We now evaluate the denominator

J‘: exp _.[ Z Zj d%f =6 Z (B3)

n=1 1

where ¢ (4) is the Rieman zeta function evaluated at 4. The Q(V) , the photon arrival rate is:

_ 1 _ 1 F(m m)z_3
O(v)=—-B.(v)=1— 60(4) o i (B4)

We evaluate Q(V) at the peak frequency of the Solar spectrum maximum:

Vyeur =(1.0345x10") T T =5772K (B5. a, b)
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where it is well known that F(mmt):E x 1002082l and £ <1350 W/m* . In

summary:

d277 F(mt) 24/3 hV eak
S = — sa A [] —peak B6.a,b
0 Q(V) kTV 64/(4) e;{_l Vd’ l(vpeak) kT ( )
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