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1.Introduction 
 
Reviewers who have read the latest papers on the new Intensity Correlation Imaging process 

have made the excellent suggestion that the author demonstrate how effective this algorithm 

can be utilized in real applications. Now that the mathematics of the ICI algorithm and its 

enormous reduction of integration time is reasonably well explored, this paper reviews its 

practical applications in astronomy, specifically the high resolution imaging of commercial 

geostationary satellites. This could open the door to the construction of advanced ICI 

observatories that are within the financial resources of colleges and universities around our 

country, yet able to compete with very large telescopes such as the 30-meter telescope. 

To arrive at a preliminary design for a ICI observatory, Section 2 briefly reviews the sequence 

of five papers that have completed the present ICI algorithm and its formulation of the 

integration time. Next, Sections 3 and 4 discuss two additional factors that have been known to 

reduce integration times still further. These are the use of redundant baselines and 

multispectral avalanche photodetectors. Finally, Section 5 determines the rapid integration 

times for high resolution imaging of geostationary satellites. Surprisingly, and due to the 

partial coherence effect, the architecture of the ICI observatory strongly resembles an imager 

design found in nature.  

 

2. The evolution of ICI toward its present state 
 

The first experiments on imaging techniques based upon the correlation of intensity 

fluctuations measured at two or more spatial-temporal points for thermal sources of light were 

carried out by Hanbury Brown and Twiss (HBT) [1-4]. At the outset a number of advantages 

were discerned: non diffraction limited, inexpensive hardware, immunity to phase and 

intensity scintillations, and electronically coupled apertures capable of unlimited resolution. 

However the very long integration times posed the main obstacle for some seventy years. 

Besides the thermal source of illumination, HBT rests on the following assumptions 

concerning the measurements of the cross correlations of  intensity fluctuations :  

 

(1) The square of the normalized coherence magnitude values are typically of order 
310− for those regions in the u-v plane corresponding to reasonably detailed features in 

the image domain. Hence, the SNR  has only a linear term in this factor. 
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(2) The bandwidth of the photodetector is much less than the optical bandwidth. As a 

consequence only spectral radiance contributes to the SNR. Furthermore, the one- 

time probability density of the intensity fluctuations is Gaussian.  

(3) The condition of greatest interest to us is the observation of dim objects ranging from 

10 to 14 apparent magnitudes. The result is that the SNR has only a linear term in the 

number density per mode.   

(4) Dark count should be negligeable. This means that photodetectors need temperature 

control. (The author favors built-in coolers). 

(5) Photodetectors must have no DC component. The object is to measure intensity 

fluctuations. (The author favors APDs run in Geiger mode)  

(6) If individual apertures are larger than the size able to resolve the target, the coherence 

magnitude washes out. The partial coherence effect, denoted P(A), is explained in 

Section 5 and must be close to unity. 

 

Under these conditions, and following Brown and Twiss [1-4], the intensity fluctuation cross-

correlation for a pair of apertures is: 
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At this point we observe that the coefficient of the noise term can be determined at the outset 

by calibrating the detectors, using the aperture parameters, and measuring the intensity 

observed by the individual aperture sensors. In other words, the quantity 
2

c d dT          
  can be obtained before any intensity fluctuation cross 

correlation measurements are attempted. Hence, it is convenient to divide the intensity cross-

correlation by this factor, thereby normalizing the noise component to unity standard deviation. 

Therefore we can write: 
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0S may be recognized as the zero baseline SNR for a unit integration time, which can be 

determined at the outset via measurements from the individual apertures and equipment 

calibrations. ( )S u  can be interpreted as the “empirical SNR” that one can use to compare the 

signal component of the measurement to the noise component, whose standard deviation is 

always one. Hence, as the integration time increases, one can compare  ( )
2

0S T  u to unity 

to ascertain if the desired SNR is reached with 50% probability. Thus we can define T  as:  
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The expression for T constitutes the “conventional” estimate of the integration time 

formulated by Brown and Twiss.  

The effort to reduce integration times lasted over a quarter of a century and success was 

achieved quite recently via a sequence of five journal papers [6-10]. The history of this labor 

has been disclosed by the invited speech, [11], at the 4th International Conference on Optics, 

Photonics and Lasers at Hiroshima, Japan on December 7, 2023. The following briefly 

describes the evolution of an algorithm that enormously reduces integration time, rendering 

ICI a practical, and inexpensive astronomical imaging technique.    

The first challenge was to discover a phase retrieval algorithm capable of converging in the 

presence of large amounts of noise (low values of dSNR ). The starting point of this effort was 

Fienup’s Hybrid Input-Output (HIO) algorithm [5]. In the presence of low noise HIO displays 

superior convergence behavior in contrast to other methods. If dSNR is below unity, however, 

HIO can often fail to converge. In references [6,7] the present author added two crucial  lines 

of code to HIO: (1) a strict restriction of real valued, non-negativity on the current image every 

iteration and (2) a relaxation technique that gradually satisfies both Fourier and image domain 

constraints. If we denote by ( )Ĝ k  the current value of the coherence magnitude, then the 

relaxation technique is: 

                                           ( ) ( ) ( ) ( )ˆ ˆ1 1 gG k G k k + = − +                                   (4) 

Where ( )g k  is the magnitude of the Fourier transform of the earlier image iterate,  ( )g k  

and the relaxation parameter,  is of order 5 610  to 10− − .  The resulting algorithm is called the 

Noise Reduction Phase Retrieval (NRPR) algorithm.  

The analysis of Reference [7] shows that the alteration of the original coherence magnitude 

data using the previous iterate reduces the noise. Examples shown in [6] display full 

convergence to the noise-free image for dSNR  as low as 
810−

.  Moreover, [7] establishes that 

full convergence is attained provided that zero amplitude pixels are known a priori.   

As a next step, we note that Brown and Twiss wished to determine stellar diameters on the 

basis of an assumption of radial symmetry which requires only the coherence magnitudes for 

each flux collector pair. However, for two-dimensional imaging the Van Cittert-Zernike 

theorem requires phase information, which in turn demands low noise phase retrieval 
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algorithms as provided by [6,7]. Assuming that black pixels are known a priori, the Fisher 

information needed for the  Cramer-Rao bound demands the use of conditional probabilities 

reflecting the necessary constraints. Such probabilistic constraints necessarily reduce noise.in 

the final result. This is demonstrated in Reference [8]. Using the Hirschman entropic 

uncertainty principle [12-14] and Lyapunov’s form of the central limit theorem [15], the 

following asymptotic relation (for large numbers of black pixels) is obtained: 

                                                              4 2CN SNR                                                            (5) 

Where we set dSNR to unity and 
CN is the number of black pixels in the field of view. We   

note that even for modest sized images, 
CN is quite large and dominates the total pixel count. 

Therefore, the asymptotic result for the integration time established for NRPR is: 
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Figure 1 shows the ratio of ( ) 
NRPR

T to the conventional calculation of Brown and Twiss, 

( ) 
Conventional

T .  

 

 
Fig. 1.  The ratio of NRPR integration time estimates to the conventional estimate of Brown and Twiss.  

 

The previous expressions presuppose that the configuration of the zero intensity pixels are 

known. But our final goal is to use ICI to construct images with reasonable integration times 

using no a priori  data except that (1) we are looking at bright objects against a black sky, and 

(2) we have a crude estimate of the angular size of the objects (±3 dB). Thus we must find a 

way to discover the identity of the black pixels from the limited data (items 1 and 2). 

  

Reference [9] explores a stochastic search algorithm. Using the same initial coherence 

magnitude data, run a series of NRPR calculations, where the initial guesses for the image are 
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statistically independent, uniformly distributed in an interval [0,δ), where   is a real, 

nonnegative constant. This produces an ensemble encompassing all possible multi-pixel 

images. One might reason that such an hypothesis test would demand innumerable trials. 

Surprisingly, there is a high probability that the number of trials needed to discover the black 

pixels (and converge to the noise-free image) are very few.  

 

The key element in the stochastic search algorithm is the concept of the “Box”.  This is a 

square region of size Bx that is centered in the field of view where all pixels within the box are 

unconstrained and all pixels outside the box are constrained to be zero. The basic idea is to set 

up a series of NRPR runs that start with large box sizes and progress to smaller and smaller 

boxes – until the noise-free image is identified. 

 

Figure 2 shows the process. One first collects the coherence magnitude data for all apertures. 

This data remains the same for all random trials. The algorithm sets a box size, then runs 

NRPR (using a new random initial guess every trial). If, during a sequence of trials there are 

no two fully correlated images, the algorithm tries a new, smaller box and runs again. On the 

other hand, if during a sequence of trials there are two identical images (allowing for the trivial 

ambiguities of 180 degree rotation or object translation in the field of view), then NRPR has 

selected the noise-free image. Every computation made to date using this algorithm has 

produced the same result. As in thousands of similar tests, there are two categories of images: 

A set of random, nonrepeatable images and a set of images that, aside from translations and 

180-degree rotations, perfectly match one another (and match the true, noise-free image as is 

proved in Ref. 10). 

 

To illustrate computational results for the stochastic search algorithm, Figure 3 shows a typical 

sequence of random trials (for a simple satellite image) terminating in the perfect noise-free 

image. Figure 4 displays the statistics of the probability that for a given box size the algorithm 

will identify the correct image after R trials. The probabilities are quite large. The Right side of 

the Figure shows that if the box size is too small to capture the true image, the resulting 

converged image produces illumination outside the box as a consequence of a conflict between 

the Fourier domain and image domain constraints. 

 

 

 
Figure 2: Diagram of the stochastic search algorithm. 
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Figure 3: Typical sequence of convergent images (for the box size of 44), terminating when two of the images are 

perfectly correlated. 

 

 
Figure 4: Left-hand side: Monte Carlo statistics of the probability of a noise-free image identification vis the stochastic 

search algorithm. Right-hand side: The algorithm indicates when the box-size is too small to contain the illuminated 

object. 
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Finally, Reference 10 presented a sequence of asymptotic approximations revealing the 

underlying mechanisms of ICI and its attendant NRPR algorithm and the stochastic search 

algorithm as published in [9]. The intent is to better understand the ICI approach with a view to 

improve and refine the algorithms. The outcome is that [10] provides proof of the results of [9]. 

The developments in section 6 of  [10] reveal why the stochastic search process can achieve 

convergence to the noise-free image with high probability and few computational trials. As a 

result of the statistical analysis of Section 6 of [10], it turns out that the reverse of the 

stochastic algorithm, i.e. starting with small boxes and then increasing their size as opposed to 

vice-versa actually speeds up the convergence of the method to a handful of trials. These 

results are illustrated in Figure 5. 

 

 
 

Figure 5: (a) GOES 16 type geophysical satellite at geostationary orbit with 20 cm resolution, (b) Closed-form 

statistics of the stochastic search algorithm, (c) A sequence of images of the test image proceeding from left to right 

and top to  down. The top row progresses from 20 to 28x xB B= = illustrating the contradictions inherent when the 

box size is smaller than the illuminated object. Once the box size can contain the object the lower row shows five 

correct images, all using  30xB =  

 

3. Preliminary observatory design and the use of redundant baselines 
 

Having reviewed the up-to-date ICI theory, this paper addresses the characteristics of an 

observatory suited to the high resolution imaging of commercial geostationary satellites. For 

simplicity, it is assumed that the tilt of the u-v plane from zenith is modest, so that the 

positioning of the observatory apertures is approximately on the horizontal ground plane. The 

geometry of the observatory is defined by the location vectors, termed here as the baseline 

vectors, linking all the pairs of aperture locations in the horizontal plane. Each baseline vector 

is associated with the time averaged, intensity fluctuation cross-correlation (i.e. the coherence 
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magnitude data) collected by the aperture pairs. In the recent theoretical developments [6-10], 

each baseline vector was assumed unique, so that there were only a single coherence 

magnitude measurement per baseline vector. In this application it is time to exploit a 

previously existing and fairly obvious technique to further reduce integration time. The 

uniform tessellation of the aperture positions can be very useful because it allows redundant 

baseline vectors and their repeated and statistically independent coherence magnitude data to 

reduce noise.  

 

To estimate the further reduction of integration time, it is assumed that the aperture positions 

occupy a  square grid. This implies a square grid for both the u-v plane and the positioning of 

the pixels in the desired image field-of-view. In the latter case, the size of the image is denoted 

by N pixels on a side, where N is an odd integer.  The following discussion demonstrates 

how a square grid of aperture positions that are 1N +  on a side can produce a significant 

reduction of integration time by means of redundant baseline vectors. 

 

To begin, we use Figure 6 to explain the process, where 11N = . The figure shows 

( )
2 21 12N + = apertures in a square array. We take ¼ of this array, shown by the red outlines, 

and compute the intensity fluctuation cross-correlations for all the baseline vectors in the 

( ) ( )1 2  by 1 2N N+ +  region. Then we reposition this array within the  ( ) ( )1  by 1N N+ +  

array without repeating any position and without repeating a cross-correlation for a 180-degree 

rotation of a baseline vector. As is described below in Appendix A, which explains the 

computational aspects of the design, all of these calculations are readily parallelizable and 
therefore can be produced within the same integration time. Given this cross-correlation data, 

we can construct an ( ) ( )1 2  by 1 2N N+ +  array, where for each of the fundamental baselines 

there is assigned the sample averages of the redundant coherence magnitude measurements. 

  

 
Figure 6: The geometry of the aperture locations in the horizontal plane. ( )R x  is the redundancy of the u-v plane 

baseline vector 
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The fundamental baseline vectors are shown at the top of  Figure 7. Lower in the Figure the 

left-directed and right-directed vectors are sorted out preparatory to the construction of the u-v  

plane array. Notice that the left-directed vectors have no vectors on the lowest horizontal layer, 

and the right-directed vectors on the left-most vertical layer. The reason for this is that the 

intensity fluctuation cross-correlation is the same as that associated with its 180 degree rotation. 

This means that the pair of grids at the bottom of Figure 7 must be overlapped, joining the 

right-most vertical column of the left-hand array to the left-most vertical column of the right-

hand array.       

 

 
Figure 7: The fundamental baseline vectors (top), sorted into left-directed and right-directed vectors (bottom). These 

will be amalgamated into a central vertical column. 

 

 
 

Figure 8: Construction of the u-v plane 
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Figure 9: Redundancy matrix for the N = 11 example. 

 

The next step is the construction of the u-v plane as illustrated by Figure 8. The baseline 

vectors in that plane take the form of the basic measurements in the object plane divided by  , 

the mid-band wavelength of the photodetection devices. The right side of the previous diagram 

is amalgamated as described previously; the right-hand array is then rotated 180 degrees 

counterclockwise. Then the left-hand array in the previous diagram is rotated 180 degrees 

clockwise and amalgamated along the horizontal seams. The result is a u-v plane array that has 

its origin at the center of the array and forms an N N  Fourier-domain matrix (the same 

dimensions as the image-domain matrix). Each baseline vector and its 180 degree rotation has 

the same sample averages of the redundant coherence magnitude measurements.  

 

 

The resulting redundancy matrix  for our 11N =  example is shown in Figure 9. In general, 

for each u-v vector, u ,the redundancy, denoted by ( )R u  is determined as follows: 

 

( )    

1

2

0 0 0

: 1,...,1     0 0

0 0 0

0 0

0 0

N T

T

H

N N

U U M U U

R I M F F M I

+

 
 

 =
 
  

   
    =

     
      

u

                              (7) 

We note that: 
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Furthermore, the sample averages of the redundant coherence magnitude measurements. Have 

the form: 
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where the ( ), 0,1sNu  for all s and u are statistically independent. Since we assume that all 

apertures and their characteristics are the same as well as the integration time, we can divide 
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all terms by 2

c d dT         
to obtain the expression for the  sample averages of 

the redundant coherence magnitude measurements of the empirical SNR to obtain: 
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Hence, we obtain: 
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However, the empirical SNR should be measured in comparison with a unit standard deviation. 

Then as before, we define:  
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We now see that this version of T is the same as  
conventional

T except for the factor of 

( )1 R u . Then using the ratio    
NRPR conventional

T T  we obtain: 
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For a quick upper bound estimate of the integration time, we can use ( ) ( )( )
2

1
2

1 1R N + +u . 

The upper bound for ( )R u  is only four times larger than this lower bound. Furthermore the 

upper bound is quickly erased by the operation of NRPR because the upper bound is associated 

with the small baseline vectors which have the largest SNR, whereas the lower bound persists. 

Thus a truly precise estimate of T , taking account of the operation of NRPR, is given by: 
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Next, we consider the image field-of-view and stipulate some approximate requirements as 

illustrated in Figure 10. The x-y plane exists close to the geostationary object. x is the 

desired resolution length.  We are looking at an illuminated (via reflected sunlight) object 

against a black sky. To achieve sufficient image detail, it is best to obtain a rough estimate of 

 



 12 

 
Figure 10: Configuration of the image plane (the inverse Fourier transform of the u-v plane). 

 

the object size. Also to provide sufficient black pixel constraints one should make the size of 

the whole image field-of-view approximately three times the size of the object. Given the 

resolution size, the size, L, of the entire array on the ground and the diameter of each aperture, 

L, and d, should be: 
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where H is the geostationary altitude. 

 

Next, we compute  , the number density per mode assuming diffuse reflection and using the 

black-body approximation and the apparent magnitudes of the satellites. Appendix B gives us: 
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where ( )peakQ  is the photon arrival rate, peak is the frequency of the solar spectrum 

maximum, ( )satF m is the flux from a satellite of apparent magnitude satm and ( )4  is the 

Rieman zeta function evaluated at 4. 

 

 

4. Analysis and benefits of multispectral photodetector operation 
 

An additional way that results in decreased integration time is due to the stipulation (2) in the 

Introduction, that the bandwidth of the photodetectors must be much smaller than the optical 
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bandwidth. This is known as the slow detector assumption. The technique is to equipe each 

detector with multiple non-overlapping frequency channels (so that all channels are 

statistically independent) denoted here by cM . One then averages the detector output channels 

as depicted in Figure 11 . The theory established by Brown and Twiss is that if each channel is 

at least an order of magnitude larger than the detector bandwidth, the SNR for cM channels is 

increased in proportion to 
cM , thereby, in effect, increasing the detector bandwidth 

by
cM and decreasing integration time by 

cM . To put it another way, under the slow detector 

condition, the SNR depends on the spectral radiance, not the total flux. This has been 

established by theory [1, Remarks following Equation (3.62)] and [2, Equation (2.13)] and 

experiment [3,4]. The expression for the integration time is amended to: 
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The state of the art in multi-spectral detectors admits of reasonably priced and modest numbers 

of frequency channels. As illustrated in the figure below, if 1d GHz =  and each spectral 

channel is 10 GHz  one can sustain  600 channels. 
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Figure 11: illustrates the initial considerations in defining a multispectral correlator design.  First one establishes the 
desired image resolution of the observed object. This drives the spectral resolution requirement which is implemented 

by a narrow band filter. inserted into the telescope optics and determines the optical bandwidth,  . We assume that  

  and the coherence are approximately constant over the optical bandwidth  so that they are characteristic of the light 

in the entire band. 

 

With further analysis, going beyond [1-4], the ratio of the frequency channels to the 

detector bandwidth need not be much larger than unity [16]. Thus 
56 10cM    can be 
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attainable but requires further development and price reduction. In the next section, we will 

compare both 600 channels and 56 10 . 

 

 
5. Preliminary design of a high resolution ICI observatory  
 
The first consideration is the range of the apparent magnitudes. Many of the smaller scale 

satellites range from magnitude 10 to 14. These are also typical of GOES 16 sized bodies. 

Therefore we select a satellite that is 6 by 6 meters, exhibiting satm  in the range 10 to 14. We 

wish to achieve a fairly challenging degree of image resolution. Accordingly we choose 

10x cm = . Taking account of  the image field-of-view stipulations in Fig 10, namely  

( )( )3 6 2000N x m m    . This leads to:  

                                                  ( )179 1 9L m d L N cm= = + =                                 (19. a, b) 

Additional parameters needed for the integration time computation are as follows: 

 
3 28

9min
35,786 , 0.5, 1 , 10 ,d CH km GHz N N   −= =  = = =               (20. a-e) 

 

A curious feature is the small aperture diameter and its effect on the partial coherence factor, 

( )P A . The following figure shows this factor as a function of the aperture width divided by 

the array width that would be able to resolve the  illuminated object. Taking account of the fact 

that the object size is approximately one third of the array size, i.e. ( )1
3

0.13d L = , it is 

obvious that  ( )P A  is very close to unity. Now proceeding with ( ) 1P A =   we compute the 

integration times and excess processing times using the formulae developed in the previous 

sections, namely Equations (14,15,16,17 and 18) and in the appendices A and B. 

 

Table 1 displays the results for T and excessT (as defined in Appendix A) In part (a), 

600.cM =  Since  
54.012 10excessT − =   the excess processing time has negligible effect on 

the total imaging time. At, 11.5satm  , T is nearly an hour, but at 14satm  , 

85T Hrs  is still not prohibitive. In part (b),  
56 10 .cM =   In this case 0.0401excessT =  

outweighs the lowest T  but becomes negligible above 12.5satm  . For all of the apparent 

magnitudes considered, excessT T +  is never more than  5  minutes. These results show an 

enormous reduction of imaging time as compared to the conventional Brown-Twiss SNR 

formulation. Indeed, the ratio    
NRPR conventional

T T  in the case 
56 10cM =   is 

approximately 
314.2 10−  . 

 

There is also a striking difference between the aperture design of Brown and Twiss and the 

present design. Figure 13  shows the Narrabri observatory with its more than six meter 

apertures, and the long baseline distances between them, whereas Figure 14 (which is termed 

the “compact array”) envisions closely packed 9cm apertures. The earlier design was properly 

motivated by the goal of measuring stellar diameters,  while the present design is absolutely 

driven by very high resolution imaging of resident space objects. The apertures in Figure 14  
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Figure 12: Calculation of the partial coherence factor in Ref [2] by means of the Manchester University Electronic 

Computing Machine. Square apertures are assumed. For the present observatory design the ratio of aperture size to the 

satellite size is very small, resulting in a near unit coherence factor.   

 

 
( ) 5600, 4.012 10C excessa M T −=  =    

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

( ) 56 10 , 0.0401c excessb M T=   =  

Table 1: (a) 600.cM =  Since  54.012 10excessT − =   the excess processing time has negligible effect on the total 

imaging time. (b)  
56 10 .cM =   In this case 0.0401excessT =  outweighs the lowest T  but becomes negligible 

above 12.5satm  .  

 

satm ΔT ( )minutes ΔT+ΔTexcess ( )minutes
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Figure 13: Illustration of the Narrabri Observatory flux collectors; their size and spacing. 

 

 
(b) 

Figure 14: The compact array, showing  closely spaced, highly redundant and very small flux collectors. 

 
could be entirely enclosed units each consisting of a refractive lens with a Cholesteric Liquid 

Crystal (CLC) tunable aperture mirror controlling line of sight, feeding into a compound 

elliptical concentrator which deposits photons on a multispectral avalanche photodiode. Each 

aperture sends its intensity fluctuation signals into a processing mat which computes all the 

redundant coherence magnitude data.  

 

The compact array design described above is one of a number of imaging devices that 

resemble imagers that occur in nature, namely the insect eye as shown in Figure 15. The insect 

eye has a wide field of view, but because it, like ICI, measures only intensity fluctuations, the 

partial coherence effect forces it to consist of a sheaf of tiny intensity sensors, called 

ommatidia. The individual ommatidia are not diffraction limited image forming devices. Each 

ommatidium  has a lens that  focuses light  on  a light guide  (i.e. a transparent tube or 

rhabdom) which  diffuses the light into closely packed photoreceptor cells (the R-cells). 
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Figure 15: Diagrams of the common insect eye. The flux collectors (ommatidia) must be too small to resolve the target, 

else the eye cannot work. 

 

The rhabdom/R-cells geometry permits multispectral operation. The insect eye is a highly 

emergent, sophisticated intensity sensing device capable of very high resolution. Our 

suggested design for an ICI observatory in Figure 14 will be one of a number of  design 

refinements based upon the study of insect eyes and the development of artificial ommatidia.  

 

The study of nature for the advance of astronomy will also result in a vast reduction in the cost 

of high resolution imaging of geostationary satellites based on the ground. If we consider a 

~180 meter primary mirror ( to attain 10 cm resolution), seeing conditions would demand that 

the primary would be segmented (each segment being ~ 1 meter or less) and all segments 

controlled by active optics to reduce phase scintillations below roughly 30  in the visible 

range. The extreme restrictions on sensitivity also pertain to large-scale conventional 

interferometers. No conventional visible range multipixel imager has been developed or 

proposed with 4 Mega pixel imaging, and 10 cm resolution per pixel out to 36,000 km, with a 

cost below $ 140 million USD. In contrast, the specifications for optical alignments and 

surface precision for the present ICI concept are in the centimeters range not the nanometer 

range. In addition, the ICI aperture is fully enclosed, and temperature controlled.  These 

features mean that the ICI apertures  can be mass produced. Furthermore, although we 

mentioned a super-computer as a vehicle for parallelizing the redundant coherence magnitude 

computations, only addition operations are needed. Thus a reasonably simple adding machine 

will suffice to perform imaging within minutes or hours of integration time. 

    
 

6. Concluding remarks and further efforts 
 

This paper considered the design of an ICI observatory capable of imaging commercial 

geostationary satellites with a resolution of 10 centimeters and a field-of-view of four mega-

pixels. The effects of redundant baseline measurements and multispectral photodetectors were 

included. The integration times were computed for apparent magnitudes spanning the range 10 

to 14.  For modest numbers of multispectral frequency channels, integration times spanned 

minutes to hours, and for more advanced multispectral sensors, the integration times were no 

longer than five minutes. The partial coherence effect tightly constrained the observatory 

design to be one in which small, independent apertures are closely spaced in a large square 
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array (~180 meters on a side). This architecture strongly resembles that of the insect eye, 

which leads to both enormous imaging capability as well as inexpensive hardware. Further 

efforts will harness our study of nature to advance computational imaging via ICI considerably 

beyond conventional astronomical technology. 

 
Appendix A 

 
Here we consider the details of the algorithms needed to calculate the necessary intensity 

fluctuation cross-correlations and their insertion into the fundamental baselines needed to 

populate the u-v plane. Up to one thousand image pixels on a side (i.e. a megapixel image) are 

deemed sufficient to provide sufficient image resolution for many geostationary satellites. We 

begin with a number of definitions: 

 

         

   ( ) ( )

   ( )

 

, ,
The product of intensity flutuations for the baseline vector 

                             , ,  within the aperture frame of rereference

, : horizontal index of the aperture position re

k j l m
C m t

k j l m

k j k


→

→

=

 

lative to the below-left 

                  corner of the aperture array, marking the base of the baseline vector

            vertical index " "  marking the base of the vaseline vector ... 

, :  are 

j

l m

=

similarly defined and mark the tip of the baseline vector. These 

           coordinate indices are shown in Figure 6. 

1 ,  Sample frequency employed to calculate the time averaged 

                

t f f =

   ( )    ( ) ( )
, ,

1

          intensity cross-correlations 

                          i.e. the coherence magnitude data averaged over 

ˆ , , coherence magnitude data averaged 

                 

d

T t

k j l m
m

T

C k j l m C m t







→
=

 



→ = 

   ( )

                                      over  for baseline vector coordinates 

                                                      , , ,  as defined in Figure A-1

T

k j l m k j



→
    (A1. a-e) 

 

The quantities    ( )ˆ , ,C k j l m→ are running averages that stop at the calculated integration 

time, T  . The intermediate values, 
   ( ) ( )

, ,k j l m
C m t

→
, are not saved. These coherence 

magnitude data are to be calculated by means of separate analogue or digital computers that 

are resident in each ICI aperture. Because of the limit on 
32 10N    each aperture processor 

needs to compute less than two thousand coherence magnitude values. This suffices to 

compute all the necessary    ( )ˆ , ,C k j l m→ values simultaneously  within the predicted 

integration time T so that there is no excess computation time beyond T . 

 

Furthermore, the operation of NRPR quickly reduces the noise components of the small 

baseline vectors. Because of this, not all resident aperture computers need participate in 

computing the    ( )ˆ , ,C k j l m→ . In fact, only the smallest number, ( )( )
2

1
2

1 1N + + , of 

   ( )ˆ , ,C k j l m→ must be computed. Let us define: 
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( )    ( )

( )

ˆ, The sum of all , ,  that pertain to 

                   the baseline vector, ,  in the image plane

x y C k j l m

x y

   = →

 

                     (A2) 

 

Our analysis starts with the computation of the ( ),x y   pertaining to the rightward pointing 

baselines in Figure 7. We note that because only coherence magnitudes are computed, not 

coherence phases, the baseline vectors are distinguished only by their lengths, and therefore 

the leftward pointing baselines are endowed with the same ( ),x y   values. Likewise the 

same is the case for the lower pointing baselines shown in Figure 8. Hence, we need consider 

only the rightward pointing baselines in Figure 7. 

 

 Figure A-2, illustrates how the ( ),x y   are composed of the    ( )ˆ , ,C k j l m→  by summing 

the redundant coherence magnitude data pertaining to the (4,6) baseline In the in the image 

domain coordinates while using only ( )( ) ( )
2

1
2

1 1 49N + + = of them. The resulting ( ),x y   is: 

 

            

( )    ( )    ( )    ( )

   ( )    ( )    ( )

ˆ ˆ ˆ4, 6 0,0 4,5 1,0 5,5 ... 8,0 11,5

                                 

ˆ ˆ ˆ                               + 1,0 5,5 2,0 6,5 ... 8,0 11,5

                                                       

x y C C C

C C C

  =  = = → + → + + →

→ + → + + →

   ( )    ( )    ( )

   ( )    ( )

ˆ ˆ ˆ                               + 0,4 3,9 1,4 4,9 ... 8,4 11,9

                                                       

ˆ ˆ                               + 0,5 3,10 1,5 4,10

                      

C C C

C C

→ + → + + →

→ + →

   ( )    ( )ˆ ˆ        2,5 5,10  3,5 6,10C C+ → + →

          (A3) 

 

Note that all other baseline vectors in the u-v plane will have the same number of terms and 

that for all redundant vectors in the u-v plane, all the    ( )ˆ , ,C k j l m→ terms will be different. 

Thus for each pixel in the u-v plane there will be ( )( )
2

1
2

1 1N + + terms, each one containing 

distinct coherence magnitude values. For an 
2N image , ( )( )

2 21
2

1 1N N+ + coherence 

magnitudes must be summed, requiring the same number of Flops (Floating Point Operations). 

However, with existing super computers capable of 
1810  Flops per second the excess time 

needed for this processing is   

                                                    ( )( )
2 2 181

2
1 1 10ExcessT N N = + +                                    (A4) 

For multispectral detectors, with 
cM  frequency channels, 

ExcessT becomes:  

                                        ( )( )
2 2 181

2
1 1 10Excess cT N N M = + +                                  (A5) 
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Figure A-1: 

 

These numbers constitute the excess processing time needed to secure all the redundant 

baseline data beyond the predicted integration time. Thus both the integration time and the 

excess processing time will be displayed in the body of this paper. 

 

 

Appendix B 
 

This section derives 0S  characterizing the satellites by their apparent magnitude due to their 

diffuse reflection of solar radiation and its black body approximation. We begin with the black 

body law, ( ) , as a function of frequency  . This is proportional to: 

( )
( )

3

;
exp 1

h

kT

 
 


 =

−
                                          (B1.a,b) 

If the total flux, F , of the satellite is known, the spectral radiance is given by: 

( ) ( )
( )

3

0
,

exp 1
h

kT
B M M F d


  





=  =
−                      (B2.a,b)  

We now evaluate the denominator: 

( )
( )

3 3
3

40 0 0
1 1

1
6 6 4

exp 1 1

n

n n

d d d e
e n





 
    



   
−

−
= =

= = = =
− −

             (B3) 

where ( )4  is the Rieman zeta function evaluated at 4. The ( )Q  , the photon arrival rate is: 

                                       ( ) ( )
( )

( )

31 1

6 4 1

satF m
Q B

h kT e
 


 

  
= =

−
                             (B4) 

We evaluate ( )Q  at the peak frequency of the Solar spectrum maximum: 

( )111.0345 10 5772peak T T K =  =                     (B5. a, b) 
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where it is well known that ( )  0.4 26.832 210 and 1350satm

satF m F F W m
− −

=  = . In 

summary: 

   ( )
( )

( )
( )

2 3

0 ,
6 4 1

peaksat

d peak

hF md
S Q

kT e kT

 
   

 
= = 

−
            (B6. a, b) 
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